• Title/Summary/Keyword: Molecular weight degradation

Search Result 251, Processing Time 0.033 seconds

Storage of Waste-Brown Seaweed and Degradation of Alginate Using Microorganism (미생물을 이용한 미역폐기물의 저장 및 알긴산염 저분자화)

  • An, Sang Jun;Kim, Yeong Suk;Park, Gwon Pil
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.313-318
    • /
    • 2004
  • We studied a storage of waste-brown seaweed at room temperature and degradation of alginate in seaweed by microorganism DS-02. The seaweeds, mixed with 5.0 wt% DS-02 and sealed in vinyl package without any other treatment, could be stored longer than 1 year without spoilage at room temperature. During the storage process, the alginate of seaweed was decomposed by enzyme of DS-02 and the molecular weight of alginate decreased to about 1/10 of initial quantity. DS-02 growed as fast as it had maximum weight after 24 hour culture and it's enzyme had a maximum activity of alginate degradation at $40^{\circ}C.$ The seaweed sample became particles in DS-02 culture solution and the M. W of alginate decreased to about 1/10 of initial value after 24 hour decomposition. The effect of alginate degradation with DS-02 was similar to that of degradation with 3.0 M HCI solution for 24 hour.

The Environmental Degradability of Starch-Polyethylene Composite Film (전분-폴리에틸렌 복합필름의 환경분해성)

  • Kim, Young-Gi;Park, Young-Hoon;Im, Seung-Soon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.178-187
    • /
    • 1993
  • Degradation of the starch-polyethylene composite film by an activated sludge treatment and a soil burial test was examined. The treated films had deformed structures which were resulted from the removal of starch during the treatments. The added auto-oxidant caused the degradation of the polyethylene matrices and the crosslinking reactions after the oxidation of polyethylene chains as well. As a result of soil burial test, the degradation reaction of the composite film containing corn oil as an auto-oxidant was, however, prevalent : number- and weight-average molecular weight of polyethylene decreased, while the molecular weight distribution increased.

  • PDF

Thermal-and Bio-degradation of Starch-Polyethylene Films Containing High Molecular Weight Oxidized-Polyethylene

  • Kim, Mee-Ra;Pometto, Anthony-L.
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.27-35
    • /
    • 1998
  • Starch-polyethylene films containing high molecular weight(NW) oxidized-polyethylene and prooxidant were prepared , and thermal -and bio-degradability of the films were determined. Increased levels of starch resulted in a corresponding reduction in mechanical strength of the films. However, the addition of high MW oxidized-polyethylene did not significantly reduce the percent elongation of the films. Thefilms containing high MW oxidized-polyethylene andproosicant were degreaded faster than those containing no aadditive during the heat treatment. The films lost their measureable mechanical properties when their weight-average MW(Mw) fell below 50,000. Biodegradability of the films was determined by a pure culture assay with either Streptomyces badius 252.S. setonii 75Vi2 or S. viridosporous T7A, and by an extracellulr enzyme assay using S. setonii 75vi2. The results from pure culture assay indicated that biomass accumulation on the film surface inhibited chemical and biological degradation of the films. The extracellular enzyme assay demonstrated decrease of percent elongation and increase of carbonyl index of the films. Therefore, extracellular enzyme assay could be used as a good method to evaluate biodegradability of the films.

  • PDF

Influence of NaCl and pH on Hydrolysis of Chicken Myofibrillar Proteins by Leukocyte Lysosomal Proteinases (Leucocyte lysosomal proteinase에 의한 닭의 근섬유(筋纖維) 단백질(蛋白質) 분해(分解)에 미치는 NaCl과 pH의 영향(影響))

  • Shinlee, Seung-Yee;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.569-574
    • /
    • 1990
  • The influence of NaCl and pH on degradation of chicken breast muscle myofibrillar proteins by porcine leukocyte lysosomal proteinases was investigated. The degradation reactions were carried out at $38^{\circ}C$ for 24hours under different conditions. The degradation of myofibrillar proteins by leukocyte lysosomal enzymes at various pH values was limited to partial hydrolysis. Reactions at higher pH values resulted in lower molecular weight degradation products while reactions at lower pH resulted in higher molecular weight degradation products. When NaCl was added into the reaction mixture, enzyme activities of degradation were increased at all pH values studied, as evidenced by NPN-analysis and SDS-PAGE. More severe degradation was observed with higher salt concentration. The concentration of 0.5M NaCl in the reaction mixture gave more degradation of myosin heavy chain by enzyme than that of 0.1M NaCl.

  • PDF

Physicochemical Properties and Antioxidant Effects of Fucoidans Degraded by Hydrogen Peroxide under Electron Beam at Various Irradiation Doses

  • Jeong, Gyeong-Won;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.322-327
    • /
    • 2022
  • Fucoidans were degraded by hydrogen peroxide under the electron beam (2.5 MeV) with various radiation doses (5 kGy, 10 kGy, 15 kGy, and 20 kGy) at room temperature. The degradation property was analyzed with a gel permeation chromatography (GPC-MALLS) method. An average molecular weight of fucoidan decreased from 99,956 at the irradiation dose of 0 kGy to 6,725 at the irradiation dose of 20 kGy. The solution viscosity of fucoidans showed a similar pattern to the molecular weight change. The number of chain breaks per molecule (N) increased with increasing the irradiation dose and concentration of hydrogen peroxide. The radiation yield of scission value markedly increased with increasing the irradiation dose up to 15 kGy. Also a 10% hydrogen peroxide concentration was more efficient than that of 5%. The structures of degraded fucoidan samples were studied with Fourier transform infrared spectroscopy (FT-IR). The results showed that the degradation process did not significantly change the chemical structure or the content of sulfate group. The sulfur content of each sample was determined with an Elemental Analyzer. With increasing the concentration of hydrogen peroxide, the ratios of sulfur/carbon, hydrogen/carbon, and nitrogen/carbon slightly decreased. The antioxidant activities of fucoidans were investigated based on hydroxyl radical scavenging activities. The ability of fucoidan to inhibit the hydroxyl radical scavenging activity was depended on its molecular weight.

Effect of γ-Irradiation on the Molecular Properties of Myoglobin

  • Lee, Yong-Woo;Song, Kyung-Bin
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.590-594
    • /
    • 2002
  • To elucidate the effect of gamma-irradiation on the molecular properties of myoglobin, the secondary and tertiary structures, as well as the molecular weight size of the protein, were examined after irradiation at various irradiation doses. Gamma-irradiation of myoglobin solutions caused the disruption of the ordered structure of the protein molecules, as well as degradation, cross-linking, and aggregation of the polypeptide chains. A SDS-PAGE study indicated that irradiation caused initial fragmentation of the proteins and subsequent aggregation, due to cross-linking of the protein molecules. The effect of irradiation on the protein was more significant at lower protein concentrations. Ascorbic acid protected against the degradation and aggregation of proteins by scavenging oxygen radicals that are produced by irradiation. A circular dichroism study showed that an increase of the irradiation decreased the a-helical content of myoglobin with a concurrent increase of the aperiodic structure content. Fluorescence spectroscopy indicated that irradiation increased the emission intensity that was excited at 280 nm.

Effects of the Addition Pro-oxidant on the Physical Properties and Degradation of the Petroleum- derived Plastic Film (산화촉진제 첨가가 플라스틱 필름의 물성과 분해에 미치는 영향)

  • Kihyeon, Ahn;Jae-Suk, Choi;Roun, Lee;Jung-Gu, Han;Tae-Hoon, Ro;Hyung Woo, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.165-170
    • /
    • 2022
  • If petroleum- derived plastic like a bio-based plastic was degradation, awareness like a global warming and environmental disasters will be decreased. Plastic film was produced by adding ferric ions according to concentration by using a pro-oxidant in polyolefin resin. Changes in tensile strength, elongation, and molecular weight were evaluated according to the UV irradiation time. Increasing the amount of ferric ions resulted in more significant declines of physical properties, and also resulted in greater changes in molecular weight. After 100 hours of UV irradiation, tensile strength declined significantly in the film containing pro-oxidant as compared to the control. A similar effect was also observed in terms of elongation. The film containing pro-oxidant showed a 73.8% decrease in molecular weight after 100 hours of UV irradiation. The appropriate use of pro-oxidant can not only degrade plastic film but also control the time of degradation at the petroleum-derived plastic films. Further studies are necessary to investigate the conditions of plastic film degradation.

Antioxidant and Hyaluronidase Inhibition Activities of Prunus persica Batsch var. davidiana Maximowicz

  • Cha, Bae-Cheon;Lee, Eun-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.200.3-200.3
    • /
    • 2003
  • Reactive oxygen species(ROS) are produced at a high rate continuously as a by-product of aerobic metabolism. Several lines of evidence provided that ROS appears to cause to develop aging and various diseases. High level of hyaluronic acid with decreased molecular weight has been detected in patients with inflammatory diseases including rheumatoid arthritis. Hyaluronidase is an endohexosaminidase that initiates the degradation of hyaluronic acid with high molecular weight. Prunus persica Batsch var. davidiana Maximowicz has been known as a korean folk medicine for treatment of neuritis and rheumatism. (omitted)

  • PDF

Effect of Superoxide Dismutase and Low Molecular Mediators on Lignin Degradation

  • Leonowicz, Andrzej;Matuszewska, Anna;Luterek, Jolanta;Ziegenhagen, Dirk;Wojtas-Wasilewska, Maria;Hofrichter, Martin;Rogalski, Jerzy;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 1999
  • As the biodegradation of wood constituents has been understood as a multi-basidiomycetes and enzymatic processes, this review will focus on the roles of low molecular compounds and radicals working in harmony with fungal enzymes. Wood rotting basidiomycete fungi penetrate wood, and lead to more easily metabolize carbohydrates of the wood complex. The white-rot fungi, having versatile enzymes, are able to attack directly the "lignin barrier". They also use a multi-enzyme system including so-called "feedback" type enzymes allowing for simultaneous degradation of lignin and carbohydrates. The multi-enzymes including laccase support the proposed route by explaining how the high molecular weight enzymes can function in the wood complex. These enzymes may function separately or cooperate each other. In addition, veratryl alcohol oxidase, cellobiose dehydrogenase, arylalcohol dehydrogenase, and particularly low molecular mediators and radicals have an important role in wood biodegradation. However, the possibility of other mechanism as well as other enzymes, as operating as feedback systems in the process of wood degradation, could not be excluded.

  • PDF