• 제목/요약/키워드: Molecular transporter

검색결과 181건 처리시간 0.063초

도파민운반체 영상의 임상적 유용성 (Clinical Usefulness of Dopamine Transporter Imaging)

  • 김종민;김유경;김상은;전범석
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.152-157
    • /
    • 2007
  • Imaging of the dopamine transporter (DAT) provides a marker for the integrity of presynaptic nigrostriatal dopaminergic system. DAT density is reduced in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. In patients with suspicious parkinsonism, normal DAT imaging suggests an alternative diagnosis such as essential tremor, vascular parkinsonism, or drug-induced parkinsonism. DAT imaging is a useful tool to aid clinician's differential diagnosis in parkinsonism.

알코올의존 환자의 도파민 수송체(DAT1)G2319A의 유전자 다형성 연합연구 (Association Study of Dopamine Transporter(DAT1) G2319A Genetic Polymorphism in Alcohol Dependence)

  • 양병환;이미경;최주연;김길숙;오동열;김형태;채영규
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.239-245
    • /
    • 2001
  • Objective : Dopamine transporter is member of family of Na/Cl dependent neurotransmitter transporter, 12 transmembrane domain, that has high substrate specificity, affinity. It is related with dopamine reuptake in presynaptic vesicle. DAT has a VNTR in its 3'-untranslated region(UTR). 3'-UTR VNTR polymorphism is related with modification of dopamine transmission. The association between with VNTR polymorphism and neuropsychiatric disorders such as alcohol dependence, and low activity ALDH has been studied, but their relationship is unclear. We study about association of 3'-UTR VNTR of DAT gene and G2319A and alcohol dependence. Method : Group of Korean subjects were studied with alcohol dependence(n=49 male) compared to mentally healthy controls(n=53 male). The peripheral blood sample was acquired, and Polymerase Chain Reaction(PCR) amplification, MspI procedure was done. Result : There was a significant difference between alcohol dependence group and normal control(genotype frequency p<0.05, allele frequency p<0.05) Allele A frequency and genotype(GG, GA) frequency was a significant difference between alcohol dependence group and normal control(p<0.05). Conclusion : Our study showed that genetic polymorphism of DAT1 G2319A had relation with alcohol dependence.

  • PDF

Isolation and characterization of LHT-type plant amino acid transporter gene from Panax ginseng Meyer

  • Zhang, Ru;Zhu, Jie;Cao, Hong-Zhe;Xie, Xiao-Lei;Huang, Jing-Jia;Chen, Xiang-Hui;Luo, Zhi-Yong
    • Journal of Ginseng Research
    • /
    • 제37권3호
    • /
    • pp.361-370
    • /
    • 2013
  • A lysine histidine transporter (LHT) cDNA was isolated and characterized from the roots of Panax ginseng, designated PgLHT. The cDNA is 1,865 bp with an open reading frame that codes for a protein with 449 amino acids and a calculated molecular mass of 50.6 kDa with a predicted isoelectric point of 8.87. Hydropathy analysis shows that PgLHT is an integral membrane protein with 9 putative membrane-spanning domains. Multiple sequence alignments show that PgLHT shares a high homology with other plant LHTs. The expression profile of the gene was investigated by real-time quantitative polymerase chain reaction during various chemical treatments. PgLHT was up-regulated in the presence of abscisic acid, salicylic acid, methyl jasmonate, NaCl, and amino acids. To further explore the function of PgLHT gene, full-length cDNA of PgLHT was introduced into P. ginseng by Agrobacterium rhizogenes A4. The overexpression of PgLHT in the hairy roots led to an obviously increase of biomass compared to the controls, and after addition of the amino acids, the overexpressed-PgLHT hairy roots grew more rapidly than untreated controls during early stage of the culture cycle. The results suggested that the PgLHT isolated from ginseng might have role in the environmental stresses and growth response.

The Efficiency of Zinc-Aspartate Complex on Zinc Uptake in Plasma and Different Organs in Normal SD Rats

  • Kim, Yu-Ri;Kim, Ki-Nam;Shim, Boo-Im;Lee, Seung-Min;Kim, In-Kyoung;Sohn, Sung-Hwa;Park, Myung-Gyu;Park, Hong-Suk;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제3권2호
    • /
    • pp.132-136
    • /
    • 2007
  • Zinc is essential metal and plays a role in a wide variety of physiological and biochemical processes. Prostate gland contains high level of zinc, generally 3-10 folds higher than other organs. Prostatic zinc uptake is resulted from the existence of zinc transporter (ZnT) protein families in membrane. In this study, we investigated the difference of zinc uptake efficiency of zinc-aspartate complex (Zn-Asp) into various organs compared with $ZnSO_4$. We observed that Plasma zinc concentration in both $ZnSO_4$ and Zn-Asp administrated group was increased progressively following administration, and reached a peak level at 2 hr. The increasing pattern of zinc concentration was similar to each groups, however the zinc concentration of Zn-Asp administrated group was higher than that of $ZnSO_4$ administrated group. We found that prostatic zinc level of Zn-Asp administrated group was higher than $ZnSO_4$ administrated group, and was increased approximately $\sim$2.7 fold and $\sim$4.2 fold at 4 and 8 hr after administration. From these observations, we suggest than Zn-Asp has high uptake efficiency of zinc into the prostate gland. Therefore, Zn-Asp is potentially useful treatment of many prostatic diseases.

Molecular and Functional Characterization of Choline Transporter-Like Proteins in Esophageal Cancer Cells and Potential Therapeutic Targets

  • Nagashima, Fumiaki;Nishiyama, Ryohta;Iwao, Beniko;Kawai, Yuiko;Ishii, Chikanao;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.399-408
    • /
    • 2018
  • In this study, we examined the molecular and functional characterization of choline uptake in the human esophageal cancer cells. In addition, we examined the influence of various drugs on the transport of [$^3H$]choline, and explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. We found that both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were highly expressed in esophageal cancer cell lines (KYSE series). CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is both $Na^+$-independent and pH-dependent. Choline uptake and cell viability were inhibited by various cationic drugs. Furthermore, a correlation analysis of the potencies of 47 drugs for the inhibition of choline uptake and cell viability showed a strong correlation. Choline uptake inhibitors and choline deficiency each inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be involved in choline uptake in mitochondria, which is the rate-limiting step in S-adenosylmethionine (SAM) synthesis and DNA methylation. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for esophageal cancer therapy.

MDR1 C3435T and C1236T Polymorphisms: Association with High-risk Childhood Acute Lymphoblastic Leukemia

  • Pongstaporn, Wanida;Pakakasama, Samart;Chaksangchaichote, Panee;Pongtheerat, Tanett;Hongeng, Suradej;Permitr, Songsak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2839-2843
    • /
    • 2015
  • Background: MDR1, one of the most important drug-transporter genes, encodes P- glycoprotein (P-gp)-a transporter involved in protecting against xenobiotics and multi-drug resistance. The significance of the genetic background in childhood acute lymphoblastic leukemia (ALL) is not well understood. Materials and Methods: To evaluate whether C3435T and C1236T MDR1 polymorphisms are associated with the occurrence and outcome of ALL, 208 children with ALL (median age 5.0 yr) and 101 healthy Thai children were studied by polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) assay. Results: C3435T and C1236T MDR1 polymorphism are significantly associated with the high-risk group (OR= 2.6, 95%CI =1.164-5.808; P=0.028 and OR= 2.231, 95%CI =1.068-4.659; p=0.047, respectively), indicating that both may be candidates for molecular markers in the high-risk group of ALL.

Effects of Red Ginseng on Exercise Capacity and Peripheral Fatigue in Mice

  • Kim, Daehyun;Lee, Byounggwan;Kim, Heejin;Kim, Mikyung
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권2호
    • /
    • pp.175-184
    • /
    • 2021
  • Objective: Fatigue can decrease both quality of life and work efficiency. Ginseng is one of the most popular herbal treatments for improving personal health, with applications in treating fatigue. However, the exact mechanisms of anti-fatigue effects are still unclear. Thus, we investigated the effect of red ginseng powder (RGP) on exercise capacity and peripheral fatigue using both behavioral and molecular experiments in mice. Design: Four-groups behavioral and molecular experiment. Methods: Male 6-weeks-old ICR mice were treated with distilled water, 100, and 200 mg/kg RGP for 5 days via oral administration. The exercise capacity of each animal group was measured by locomotor activity, rota-rod, hanging wire, and cold swimming tests. Additionally, after performing the treadmill to induce fatigue, lactate expression and molecular experiments were investigated using mice gastrocnemius. Results: Mice treated with RGP exhibited increased exercise capacity in the behavioral tests. Additionally, RGP induced a dose-dependent decrease in lactate levels after high-intensity exercise, and Monocarboxylate transporter (MCT) 4 expression increased in groups treated with RGP. However, there was no significant change in MCT1. Conclusions: These results suggest that RGP exerts several anti-fatigue properties by lower lactate and improved exercise capacity. Increased MCT4 expression may also affect lactate transport. Thus, this study suggests that the anti-fatigue properties of RGP might be associated with MCT4 activity.

Regulation of Taurine Transporter Activity by Glucocorticoid Hormone

  • Kim, Ha-Won;Shim, Mi-Ja;Kim, Won-Bae;Kim, Byong-Kak
    • BMB Reports
    • /
    • 제28권6호
    • /
    • pp.527-532
    • /
    • 1995
  • Human taurine transporter has 12 transmembrane domains and its molecular weight is 69.6 kDa. The long cytoplasmic carboxy and amino termini might function as regulatory attachment sites for other proteins. Six potential protein kinase C phosphorylation sites have been reported in human taurine transporter. In this report, we studied the effects of phorbol 12-myristate 13-acetate (PMA) and glucocorticoid hormone on taurine transportation in the RAW 264.7, mouse macrophage cell line. When the cells were incubated with $[^{3}H]taurine$ in the presence or absence of $Na^+$ ion for 40 min at $37^{\circ}C$, the [$[^{3}H]taurine$ uptake rate was 780-times higher in the $Na^{+}-containing$ buffer than in the $Na^{+}-deficient$ buffer, indicating that this cell line expresses taurine transporter protein on the cell surface. THP1, a human promonocyte cell line, also showed a similar property. The $[^{3}H]taurine$ uptake rate was not influenced by the inflammatory inducing cytokines such as interleukin-1, gamma-interferon or interleukin-1+gamma-interferon, but was decreased by the PMA in the RAW 264.7 cell line. This suggests that activation of protein kinase C inhibits taurine transporter activity directly or indirectly. The inhibition of $[^{3}H]taurine$ uptake by PMA was time-dependent. Maximal inhibition occurred in one hr stimulation with PMA Increasing the treatment time beyond one h reduced the $[^{3}H]taurine$ uptake inhibition due to the depletion or inactivation of protein kinase C. The cell line also showed concentration-dependent $[^{3}H]taurine$ uptake under PMA stimulation. The phorbol-ester caused 23% inhibition at the concentration of 1 ${\mu}m$ PMA. The inhibition was significant even at a concentration as low as 10 nM PMA The reduced $[^{3}H]taurine$ uptake could be recovered by treatment with glucocorticosteroid hormone. Dexamethasone led to recover of the reduced taurine uptake induced by phorbol-ester, recovering maximally after one hr. This may suggest that macrophage cells require higher taurine concentration in a stressed state, for the secretion of glucocorticoid hormone is increased by hypothalamo-pituitary-adrenocortical (HPA) axis activation in the blood stream.

  • PDF