• 제목/요약/키워드: Molecular techniques

검색결과 876건 처리시간 0.027초

[논문 철회] 노동자 건강보호를 위한 최신 유전독성학 연구전략 ([Retracted] Novel Genotoxic Strategies for Efficiently Detect Chemicals' Carcinogenicity)

  • 임경택
    • 한국환경보건학회지
    • /
    • 제44권1호
    • /
    • pp.31-43
    • /
    • 2018
  • Objectives: Effective genetic toxicology and molecular biology research techniques and strategies that are highly correlated with the carcinogenic inhalation toxicity test and related research are required. The aim of this study was to maximize the utilization of chemical substances to prevent workers' occupational diseases. Methods: We surveyed the literature, domestic and international references, and the status of relevant domestic and foreign professional organizations. Expert advisory opinions were reflected, and experts were consulted by participating in domestic and overseas academic conferences. Results: The current status of domestic and international genotoxic toxicity evaluation was examined through various documents from related organizations. Cell models for in vitro lung toxicology were investigated and summarized, and the human resources and performance results of genetic toxicity studies and pilot projects were compared and analyzed by holding an advisory meeting. We examined domestic and international genotoxicity guidelines and investigated new test methods for the development of genotoxicity and carcinogenicity. Ultimately, we described long-term future predictions, including the implementation of our researchers' recommendations and occupational genetic toxicology forecasts for future worker health protection. Conclusions: This research project aims to establish current genetic toxicology and molecular biology research techniques and strategies that can maximize the linkage with the carcinogenic inhalation toxicity test and research in the future. We expanded the study of genetic toxicity and establish a foundation forgenetic toxicity in accordance with research trends in Korea and abroad.

Radiochemical separation of 89Zr: a promising radiolabel for immuno-PET

  • Vyas, Chirag K.;Park, Jeong Hoon;Yang, Seung Dae
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.43-50
    • /
    • 2016
  • $^{89}Zr$ with the favorable nuclear decay kinetics and chemical properties is an appealing radiometal for its application in immuno-PET using radiolabeled monoclonal antibodies. Rising demand of ultrahigh purity and high-specific activity $^{89}Zr$ has propelled the radiochemist worldwide to develop an overall efficacious method for its promising separation from the target matrix $^{89}Y$. The requirement of elevated radiochemical purity (${\geq}$ 99.99%) has accelerated the efforts since last two decades to achieve higher decontamination and separation factors of carrier free $^{89}Zr$ over $^{89}Y$ using several suitable separation techniques. However, each of the technique has its own pros and cons which prior to its actual medical application needs to be optimized and thoroughly scrutinized to avoid further complications during radiolabelling of the pharmaceuticals. In this short review article we will specifically consider as well focus on the historical development and the recent advances on the radiochemical separation of $^{89}Zr$ from $^{89}Y$ which will be helpful for the separation scientist involved in this area to understand the existing available means and plan the strategy to investigate and develop the novel techniques to overcome the problems involved in the present methods.

Multi-Omics Approaches to Improve Meat Quality and Taste Characteristics

  • Young-Hwa Hwang;Eun-Yeong Lee;Hyen-Tae Lim;Seon-Tea Joo
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1067-1086
    • /
    • 2023
  • With rapid advances in meat science in recent decades, changes in meat quality during the pre-slaughter phase of muscle growth and the post-slaughter process from muscle to meat have been investigated. Commonly used techniques have evolved from early physicochemical indicators such as meat color, tenderness, water holding capacity, flavor, and pH to various omic tools such as genomics, transcriptomics, proteomics, and metabolomics to explore fundamental molecular mechanisms and screen biomarkers related to meat quality and taste characteristics. This review highlights the application of omics and integrated multi-omics in meat quality and taste characteristics studies. It also discusses challenges and future perspectives of multi-omics technology to improve meat quality and taste. Consequently, multi-omics techniques can elucidate the molecular mechanisms responsible for changes of meat quality at transcriptome, proteome, and metabolome levels. In addition, the application of multi-omics technology has great potential for exploring and identifying biomarkers for meat quality and quality control that can make it easier to optimize production processes in the meat industry.

전산광물학을 이용한 점토광물 내의 수산기 연구 가능성 (Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals)

  • 채진웅;권기덕
    • 한국광물학회지
    • /
    • 제27권4호
    • /
    • pp.271-281
    • /
    • 2014
  • 점토광물의 물리화학적 특성에 대한 분자 또는 원자 스케일의 연구 중요성이 강조되고 있다. 그러나 실험만으로는 광물의 미시적 현상을 이해하기 어려운 경우가 많다. 특히 2:1 점토광물 팔면체에 존재하는 수산기(hydroxyl)가 금속 양이온 흡착과정에 큰 역할을 한다는 가정은 X-ray를 이용하는 실험만으로는 명확하게 테스트하기 어렵다. 이번 논문에서는 점토광물 내의 수산기 연구에 대한 전산광물학(computational mineralogy) 이용 가능성에 대하여 조사하였다. 점토광물의 기본구조인 팔면체 층만으로 구성된 광물, 1:1 구조를 갖는 광물, 2:1 구조를 갖는 광물 중 대표적인 이팔면체 및 삼팔면체 층상규산염 광물을 선별하여 구조최적화를 실시하였다. 분자역학적(molecular mechanics) 계산과 양자역학적(quantum mechanical) 계산 모두 실험값의 격자상수(lattice parameters)를 잘 재현할 수 있었다. 그러나, 사면체층과 팔면체의 구조적 뒤틀림(structural distortion) 등 광물 내부구조를 기존 실험결과와 비교했을 때, 양자역학적 계산결과가 분자역학적 방법을 이용한 결과 보다 더 낮은 오차를 보였다. 파이로필라이트(pyrophyllite) 수산기가 (001)면과 이루는 각은, 수산기의 H(proton)과 사면체의 Si 양이온 간의 척력으로 결정되는데, 양자역학적 방법은 약 $25-26^{\circ}$로 예측하였고, 분자역학적 방법은 약 $35^{\circ}$ 정도로 양자역학계산 결과와 무려 $10^{\circ}$의 큰 차이를 보였다. 전산광물학은 점토광물 구조연구에 신뢰성이 매우 높은 연구방법으로 양이온 흡착과정 중 수산기의 역할 규명에 사용될 수 있다.

말디토프 질량분석을 이용한 고분자의 특성분석 (Analysis of Polymer Characteristics Using Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry)

  • 강민정;성윤서;김문주;김명수;변재철
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.263-271
    • /
    • 2017
  • 최근에, 질량분석기술의 폴리머 분석에의 응용은 MALDI-TOF MS 개발 이후 급속도로 발전하였다. 이 리뷰 논문은 현재까지 연구된 MALDI-TOF MS의 폴리머 특성분석에의 응용에 관한 최신 논문을 정리하였다. MALDI-TOF MS는 바이오 폴리머와, 합성 폴리머의 평균분자량 분석, 폴리머의 시퀀스 분석을 통한 구조의 해석, 모노머의 조성분석에까지 이용되고 있다. 엔드그룹의 특성과 농도를 분석하는 연구도 많이 진행되었고, 복잡한 폴리머의 분자량의 분석에는 SEC와 MALDI-TOF MS를 연결한 분석법을 추천한다. MALDI에 tandem MS를 결합한 분석기술이나, 이온 모빌리티를 응용한 질량분석기, TOF-SIMS, MALDI-TOF-Imaging 기술도 급격히 발전하고 있으며, 이의 폴리머 특성분석에의 응용은 별도의 분리기술이 필요 없어 앞으로 더 많이 이용될 것으로 생각된다. 분자량, 시퀀스, 그리고 모노머의 조성을 정확하게 계산해주는 소프트웨어와 고분자량(> 100 kDa)의 분석을 가능하게 해주는 기술이 개발된다면, 폴리머를 연구하는 과학자들에게 MALDI-TOF MS의 이용은 문제점을 해결하고, 목적하는 폴리머를 합성하는 데 중요한 수단이 될 것이다.

Nanomanipulation and Nanomanufacturing based on Ion Trapping and Scanning Probe Microscopy (SPM)

  • Kim, Dong-Whan;Tae, Won-Si;Yeong, Maeng-Hui;K. L. Ekinci
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.530-537
    • /
    • 2004
  • Development of a versatile nanomanipulation tool is an overarching theme in nanotechnology. Such a tool will likely revolutionize the field given that it will enable fabrication and operation of a wealth of interesting nanodevices. This study seeks funding to create a novel nanomanipulation system with the ultimate goal of using this system for nanomanufacturing at the molecular level. The proposed design differs from existing approaches. It is based on a nanoscale ion trap integrated to a scanning prove microscope (SPM) tip. In this design, molecules to be assembled will be ionized and collected in the nanoscale ion trap all in an ultra high vacuum (UHV) environment. Once filled with the molecular ions, the nanoscale ion trap-SPM tip will be moved on a substrate surface using scanning probe microscopy techniques. The molecular ions will be placed at their precise locations on the surface. By virtue of the SPM, the devices that are being nanomanufactured will be imaged in real time as the molecular assembly process is carried out. In the later stages, automation of arrays of these nanomanipulators will be developed.

  • PDF

Molecular Association of Glucose Transporter in the Plasma Membrane of Rat Adipocyte

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.115-123
    • /
    • 1991
  • Molecular association of glucose transporters with the other proteins in the plasma membrane was assessed by gel electrophoresis and immunoblot techniques. Approximately $31.5{\pm}5.1%$ of GLUT-4, $64.8{\pm}2.7%$ of clathrin, 48.7% of total protein in the plasma membrane (PM) were found insoluble upon extraction with 1% Tx-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the Tx-100 insoluble PM fraction contained about 4 major polypeptides with apparent molecular weight of above 200, 100-120, 80 and 30-35 KDa that were readily removed upon wash with a high pH buffer which is known to remove clathrin and 0.5 M Tris-buffer which is known to remove assembly proteins (AP). Immunoblotting of GLUT4 and clathrin against specific antibodies showed that GLUT-4 and clathrin were co-solubilized up to 84.6% and 82.7% respectively by wash with a high pH buffer and 1% Tx-100. When the membrane was pre-washed with a high pH buffer and 0.5 M Tris solution, GLUT4 and clathrin were not solubilized further suggesting that GLUT4 molecules are in molecular association with clathrin, AP and/or other extrinsic membrane proteins in plasma membrane and the formation of clathrin-coated structures might be involved in insulin stimulated glucose transporter translocation mechanism.

  • PDF

혈관신생 분자핵의학 영상 (Molecular Nuclear imaging of Angiogenesis)

  • 이경한
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.

Additive Fabrication of Patterned Multi-Layered Thin Films of Ta2O5 and CdS on ITO Using Microcontact Printing Technique

  • Lee, Jong-Hyeon;Woo, Soo-Yeun;Kwon, Young-Uk;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권2호
    • /
    • pp.183-188
    • /
    • 2003
  • The micro-patterning of multi-layered thin films containing CdS and $Ta_2O_5$ layers on ITO substrate with various structures was successfully obtained by combining three different techniques: chemical solution depositions, sol-gel, and microcontact printing (μCP) methods using octadecyltrichlorosilane (OTS) as the organic thin layer template. $Ta_2O_5$ layer was prepared by sol-gel casting and CdS one obtained by chemical solution deposition, respectively. Parallel and cross patterns of multi-layers with $Ta_2O_5$ and CdS films were fabricated additively by successive removal of OTS layer pre-formed. This study presents the designed architectures consisting of the two types of feature having horizontal dimensions of 170 ㎛ and 340 ㎛ with constant thickness ca. 150 nm of each deposited materials. The thin film lay-out of the cross-patterning is composed of four regions with chemically different layer compositions, which are confirmed by Auger electron microanalysis.

Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach

  • Eberhardt, Oliver;Wallmersperger, Thomas
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.685-709
    • /
    • 2014
  • Carbon nanotubes are due to their outstanding mechanical properties destined for a wide range of possible applications. Since the knowledge of the material behavior is vital regarding the possible applications, experimental and theoretical studies have been conducted to investigate the properties of this promising material. The aim of the present research is the calculation of mechanical properties and of the mechanical behavior of single wall carbon nanotubes (SWCNTs). The numerical simulation was performed on basis of a molecular mechanics approach. Within this approach two different issues were taken into account: (i) the nanotube geometry and (ii) the modeling of the covalent bond. The nanotube geometry is captured by two different approaches, the roll-up and the exact polyhedral model. The covalent bond is modeled by a structural molecular mechanics approach according to Li and Chou. After a short introduction in the applied modeling techniques, the results for the Young's modulus for several SWCNTs are presented and are discussed extensively. The obtained numerical results are compared to results available in literature and show an excellent agreement. Furthermore, deviations in the geometry stemming from the different models are given and the resulting differences in the numerical findings are shown. Within the investigation of the deformation mechanisms occurring in SWCNTs, the basic contributions of each individual covalent bond are considered. The presented results of this decomposition provide a deeper understanding of the governing deformation mechanisms in SWCNTs.