• Title/Summary/Keyword: Molecular target drug

Search Result 217, Processing Time 0.031 seconds

Modeled structure of trypanothione reductase of Leishmania infantum

  • Singh, Bishal K.;Sarkar, Nandini;Jagannadham, M.V.;Dubey, Vikash K.
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.444-447
    • /
    • 2008
  • Trypanothione reductase is an important target enzyme for structure-based drug design against Leishmania. We used homology modeling to construct a three-dimensional structure of the trypanothione reductase (TR) of Leishmania infantum. The structure shows acceptable Ramachandran statistics and a remarkably different active site from glutathione reductase(GR). Thus, a specific inhibitor against TR can be designed without interfering with host (human) GR activity.

Novel Cell-based Protease Assay System for Molecular Cell Biology and Drug Discovery

  • Hwang, Hyun-Jin;Kim, Jeong-Hee;Park, Joon-Woo;Kim, Sung-Hee;Lee, Min-Jeon;Jeong, Han-Seung;Hwang, In-Hwan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.169.1-169.1
    • /
    • 2003
  • Recently development of cell-based assay systems which are useful in molecular cell biology and drug discovery attracts significant attention. Here, we introduce a new technologies for monitoring enzyme activity and its inhibition inside living cells. Among various enzymes, proteases are important targets for studying various biological and disease-related processes such as viral infections, apoptosis and Alzheimer's disease. In this study, a sensitive cell-based protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells is introduced. (omitted)

  • PDF

Cellular Factors Involved in Methylmercury Toxicity in Yeast

  • Naganuma, Akira
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.193-193
    • /
    • 2002
  • Methylmercury causes severe central nervous system disorders. Despite the efforts of many researchers, the mechanisms involved in methylmercury toxicity and the defense against this toxicity remain unknown. We focused on the fact that drug resistance is sometimes involved in elevation of the concentration of the intracellular target of the drug. (omitted)

  • PDF

Butein Disrupts Hsp90's Molecular Chaperoning Function and Exhibits Anti-proliferative Effects Against Drug-resistant Cancer Cells

  • Seo, Young Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3345-3349
    • /
    • 2013
  • Hsp90 shows great promise as a therapeutic target due to its potential to disable multiple signaling pathways simultaneously. In this study, we discovered that a natural product, butein moderately inhibited the growth of drug-resistant cancer cells (A2780cis and H1975), and brought about the degradation of oncogenic Hsp90 client proteins. The study demonstrated that butein would be a therapeutic lead to circumvent drug-resistance in cancer chemotherapy. The structure-based screening, synthesis, and biological evaluation of butein are described herein.

Microplate hybridization assay for detection of isoniazid resistance in Mycobacterium tuberculosis

  • Han, Hye-Eun;Lee, In-Soo;Hwang, Joo-Hwan;Bang, Hye-Eun;Kim, Yeun;Cho, Sang-Nae;Kim, Tae-Ue;Lee, Hye-Young
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.81-85
    • /
    • 2009
  • Early and accurate detection of drug resistant Mycobacterium tuberculosis can improve both the treatment outcome and public health control of tuberculosis. A number of molecular-based techniques have been developed including ones using probe molecules that target drug resistance-related mutations. Although these techniques are highly specific and sensitive, mixed signals can be obtained when the drug resistant isolates are mixed with drug susceptible isolates. In order to overcome this problem, we developed a new drug susceptibility test (DST) for one of the most effective anti-tuberculosis drug, isoniazid. This technique employed a microplate hybridization assay that quantified signals from each probe molecule, and was evaluated using clinical isolates. The evaluation analysis clearly showed that the microplate hybridization assay was an accurate and rapid method that overcame the limitations of DST based on conventional molecular techniques.

3',4'-Dihydroxyl Groups in Luteolin are Important for Its Inhibitory Activities against ADAMTS-4

  • Choi, Ji-Won;Jeong, Ki-Woong;Kim, Jin-Kyoung;Chang, Byung-Ha;Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2907-2909
    • /
    • 2012
  • A disintegrin and metalloprotease with thrombospondin domains (ADAMTS) are a member of peptidase and involved in processing of von Willebrand factor as well as cleavage of aggrecan, versican, brevican and neurocan. Among 19 subfamilies of human ADAMTS, ADAMTS-4 is a zinc-binding metalloprotease and is a famous therapeutic target for arthritis. It has been reported that a flavonoid luteolin shows inhibitory activity against ADMATS-4. In this study, we verified that luteolin is a potent inhibitor of ADAMTS-4 and probed the molecular basis of its action. On the basis of a docking study, we proposed a binding model between luteolin and ADAMTS-4 in which 3',4'-dihydroxyl groups in luteolin formed hydrogen bonding with ADMATS-4 and these interactions are important for its inhibitory activity against ADAMTS-4.

The N-terminal peptide of the main protease of SARS-CoV-2, targeting dimer interface, inhibits its proteolytic activity

  • Sunyu Song;Yeseul Kim;Kiwoong Kwak;Hyeonmin Lee;Hyunjae Park;Young Bong Kim;Hee-Jung Lee;Lin-Woo Kang
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.606-611
    • /
    • 2023
  • The main protease (Mpro) of SARS-CoV-2 cleaves 11 sites of viral polypeptide chains and generates essential non-structural proteins for viral replication. Mpro is an important drug target against COVID-19. In this study, we developed a real-time fluorometric turn-on assay system to evaluate Mpro proteolytic activity for a substrate peptide between NSP4 and NSP5. It produced reproducible and reliable results suitable for HTS inhibitor assays. Thus far, most inhibitors against Mpro target the active site for substrate binding. Mpro exists as a dimer, which is essential for its activity. We investigated the potential of the Mpro dimer interface to act as a drug target. The dimer interface is formed of domain II and domain III of each protomer, in which N-terminal ten amino acids of the domain I are bound in the middle as a sandwich. The N-terminal part provides approximately 39% of the dimer interface between two protomers. In the real-time fluorometric turn-on assay system, peptides of the N-terminal ten amino acids, N10, can inhibit the Mpro activity. The dimer interface could be a prospective drug target against Mpro. The N-terminal sequence can help develop a potential inhibitor.

혈관신생 분자핵의학 영상 (Molecular Nuclear imaging of Angiogenesis)

  • 이경한
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Lee, Jaewoong;Woo, Jihye;Kang, Nam Sook;Balupuri, Anand;Lee, Minho;Kim, Seon-Young;Ro, Hyunju;Choi, Youn-Woong;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.234-247
    • /
    • 2021
  • We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.