Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.166

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast  

Lee, Sol (Department of New Drug Development, Chungnam National University)
Nam, Miyoung (Department of New Drug Development, Chungnam National University)
Lee, Ah-Reum (Department of New Drug Development, Chungnam National University)
Lee, Jaewoong (Department of New Drug Development, Chungnam National University)
Woo, Jihye (Department of New Drug Development, Chungnam National University)
Kang, Nam Sook (Department of New Drug Development, Chungnam National University)
Balupuri, Anand (Department of New Drug Development, Chungnam National University)
Lee, Minho (Department of Life Science, Dongguk University-Seoul)
Kim, Seon-Young (Personalized Genomic Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Ro, Hyunju (Department of Biological Science, College of Bioscience & Biotechnology, Chungnam National University)
Choi, Youn-Woong (Korea United Pharm. Inc.)
Kim, Dong-Uk (Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Hoe, Kwang-Lae (Department of New Drug Development, Chungnam National University)
Publication Information
Biomolecules & Therapeutics / v.29, no.2, 2021 , pp. 234-247 More about this Journal
Abstract
We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.
Keywords
Antifungal; Terbinafine; Drug target; Ribosomal protein; Sterol; Translation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, D. U., Hayles, J., Kim, D., Wood, V., Park, H. O., Won, M., Yoo, H. S., Duhig, T., Nam, M., Palmer, G., Han, S., Jeffery, L., Baek, S. T., Lee, H., Shim, Y. S., Lee, M., Kim, L., Heo, K. S., Noh, E. J., Lee, A. R., Jang, Y. J., Chung, K. S., Choi, S. J., Park, J. Y., Park, Y., Kim, H. M., Park, S. K., Park, H. J., Kang, E. J., Kim, H. B., Kang, H. S., Park, H. M., Kim, K., Song, K., Song, K. B., Nurse, P. and Hoe, K. L. (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617-623.   DOI
2 Doherty, L., Sheen, M. R., Vlachos, A., Choesmel, V., O'Donohue, M. F., Clinton, C., Schneider, H. E., Sieff, C. A., Newburger, P. E., Ball, S. E., Niewiadomska, E., Matysiak, M., Glader, B., Arceci, R. J., Farrar, J. E., Atsidaftos, E., Lipton, J. M., Gleizes, P. E. and Gazda, H. T. (2010) Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am. J. Hum. Genet. 86, 222-228.   DOI
3 Dong, Z., Zhu, X., Li, Y., Gan, L., Chen, H., Zhang, W. and Sun, J. (2018) Oncogenomic analysis identifies novel biomarkers for tumor stage mycosis fungoides. Medicine (Baltimore) 97, e10871.   DOI
4 Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T. N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., Tentler, D., Mohandas, N., Carlsson, B. and Dahl, N. (1999) The gene encoding ribosomal protein S19 is mutated in DiamondBlackfan anaemia. Nat. Genet. 21, 169-175.   DOI
5 Fang, Y., Hu, L., Zhou, X., Jaiseng, W., Zhang, B., Takami, T. and Kuno, T. (2012) A genomewide screen in Schizosaccharomyces pombe for genes affecting the sensitivity of antifungal drugs that target ergosterol biosynthesis. Antimicrob. Agents Chemother. 56, 1949-1959.   DOI
6 Bhattacharya, S., Esquivel, B. D. and White, T. C. (2018) Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio 9, e01291-18.
7 Cavalheiro, A. S., Maboni, G., de Azevedo, M. I., Argenta, J. S., Pereira, D. I., Spader, T. B., Alves, S. H. and Santurio, J. M. (2009) In vitro activity of terbinafine combined with caspofungin and azoles against Pythium insidiosum. Antimicrob. Agents Chemother. 53, 2136-2138.   DOI
8 Chou, T. C. (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621-681.   DOI
9 Cohen, J. S., Srivastava, S., Farwell, K. D., Lu, H. M., Zeng, W., Lu, H., Chao, E. C. and Fatemi, A. (2015) ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am. J. Med. Genet. A 167, 1391-1395.   DOI
10 Cokol, M., Chua, H. N., Tasan, M., Mutlu, B., Weinstein, Z. B., Suzuki, Y., Nergiz, M. E., Costanzo, M., Baryshnikova, A., Giaever, G., Nislow, C., Myers, C. L., Andrews, B. J., Boone, C. and Roth, F. P. (2011) Systematic exploration of synergistic drug pairs. Mol. Syst. Biol. 7, 544.   DOI
11 Darkes, M. J., Scott, L. J. and Goa, K. L. (2003) Terbinafine: a review of its use in onychomycosis in adults. Am. J. Clin. Dermatol. 4, 39-65.   DOI
12 de Godoy, L. M. F., Olsen, J. V., Cox, J., Nielsen, M. L., Hubner, N. C., Frohlich, F., Walther, T. C. and Mann, M. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251-1254.   DOI
13 Ryder, N. S., Frank, I. and Dupont, M. C. (1986) Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob. Agents Chemother. 29, 858-860.   DOI
14 Zhou, X., Liao, W. J., Liao, J. M., Liao, P. and Lu, H. (2015) Ribosomal proteins: functions beyond the ribosome. J. Mol. Cell Biol. 7, 92-104.   DOI
15 Zinzalla, V., Stracka, D., Oppliger, W. and Hall, M. N. (2011) Activation of mTORC2 by association with the ribosome. Cell 144, 757-768.   DOI
16 Dewhurst-Maridor, G., Abegg, D., David, F. P. A., Rougemont, J., Scott, C. C., Adibekian, A. and Riezman, H. (2017) The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in Saccharomyces cerevisiae. Mol. Biol. Cell 28, 2637-2649.   DOI
17 Farrar, J. E., Quarello, P., Fisher, R., O'Brien, K. A., Aspesi, A., Parrella, S., Henson, A. L., Seidel, N. E., Atsidaftos, E., Prakash, S., Bari, S., Garelli, E., Arceci, R. J., Dianzani, I., Ramenghi, U., Vlachos, A., Lipton, J. M., Bodine, D. M. and Ellis, S. R. (2014) Exploiting pre-rRNA processing in Diamond Blackfan anemia gene discovery and diagnosis. Am. J. Hematol. 89, 985-991.   DOI
18 Gazda, H. T., Grabowska, A., Merida-Long, L. B., Latawiec, E., Schneider, H. E., Lipton, J. M., Vlachos, A., Atsidaftos, E., Ball, S. E., Orfali, K. A., Niewiadomska, E., Da Costa, L., Tchernia, G., Niemeyer, C., Meerpohl, J. J., Stahl, J., Schratt, G., Glader, B., Backer, K., Wong, C., Nathan, D. G., Beggs, A. H. and Sieff, C. A. (2006) Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am. J. Hum. Genet. 79, 1110-1118.   DOI
19 Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A., Astromoff, A. and Davis, R. W. (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278-283.   DOI
20 Gripp, K. W., Curry, C., Olney, A. H., Sandoval, C., Fisher, J., Chong, J. X., Genomics, U. W. C. f. M., Pilchman, L., Sahraoui, R., Stabley, D. L. and Sol-Church, K. (2014) Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am. J. Med. Genet. A 164A, 2240-2249.
21 Schenone, M., Dancik, V., Wagner, B. K. and Clemons, P. A. (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232-240.   DOI
22 Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B. and Liu, J. O. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209-217.   DOI
23 Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelson, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G. and Zhang, F. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87.   DOI
24 Singh, P., Saxena, R., Srinivas, G., Pande, G. and Chattopadhyay, A. (2013) Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS ONE 8, e58833.   DOI
25 Sipiczki, M. (2000) Where does fission yeast sit on the tree of life? Genome Biol. 1, REVIEWS1011.
26 Spann, N. J. and Glass, C. K. (2013) Sterols and oxysterols in immune cell function. Nat. Immunol. 14, 893-900.   DOI
27 Sui, Z., Zhou, J., Cheng, Z. and Lu, P. (2015) Squalene epoxidase (SQLE) promotes the growth and migration of the hepatocellular carcinoma cells. Tumour Biol. 36, 6173-6179.   DOI
28 Korach, K. S., Metzler, M. and McLachlan, J. A. (1978) Estrogenic activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs. Proc. Natl. Acad. Sci. U.S.A. 75, 468-471.   DOI
29 Han, S., Lee, M., Chang, H., Nam, M., Park, H. O., Kwak, Y. S., Ha, H. J., Kim, D., Hwang, S. O., Hoe, K. L. and Kim, D. U. (2013) Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach. Biochem. Biophys. Res. Commun. 436, 613-618.   DOI
30 Han, T. X., Xu, X. Y., Zhang, M. J., Peng, X. and Du, L. L. (2010) Global fitness profiling of fission yeast deletion strains by barcode sequencing. Genome Biol. 11, R60.   DOI
31 Kramer, R. and Cohen, D. (2004) Functional genomics to new drug targets. Nat. Rev. Drug Discov. 3, 965-972.   DOI
32 Lee, A. S., Kranzusch, P. J. and Cate, J. H. (2015) eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522, 111-114.   DOI
33 Lee, M., Choi, S. J., Han, S., Nam, M., Kim, D., Kim, D. U. and Hoe, K. L. (2018) Mutation analysis of synthetic DNA barcodes in a fission yeast gene deletion library by sanger sequencing. Genomics Inform. 16, 22-29.   DOI
34 Lum, P. Y., Armour, C. D., Stepaniants, S. B., Cavet, G., Wolf, M. K., Butler, J. S., Hinshaw, J. C., Garnier, P., Prestwich, G. D., Leonardson, A., Garrett-Engele, P., Rush, C. M., Bard, M., Schimmack, G., Phillips, J. W., Roberts, C. J. and Shoemaker, D. D. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121-137.   DOI
35 Ma, F., Li, X., Ren, J., Guo, R., Li, Y., Liu, J., Sun, Y., Liu, Z., Jia, J. and Li, W. (2019) Downregulation of eukaryotic translation initiation factor 3b inhibited proliferation and metastasis of gastric cancer. Cell Death Dis. 10, 623.   DOI
36 Housden, B. E., Muhar, M., Gemberling, M., Gersbach, C. A., Stainier, D. Y., Seydoux, G., Mohr, S. E., Zuber, J. and Perrimon, N. (2017) Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Rev. Genet. 18, 24-40.   DOI
37 Takami, T., Fang, Y., Zhou, X., Jaiseng, W., Ma, Y. and Kuno, T. (2012) A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast. PLoS ONE 7, e49004.   DOI
38 Mahoney, C. E., Pirman, D., Chubukov, V., Sleger, T., Hayes, S., Fan, Z. P., Allen, E. L., Chen, Y., Huang, L., Liu, M., Zhang, Y., McDonald, G., Narayanaswamy, R., Choe, S., Chen, Y., Gross, S., Cianchetta, G., Padyana, A. K., Murray, S., Liu, W., Marks, K. M., Murtie, J., Dorsch, M., Jin, S., Nagaraja, N., Biller, S. A., Roddy, T., Popovici-Muller, J. and Smolen, G. A. (2019) A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat. Commun. 10, 96.   DOI
39 Hayles, J., Wood, V., Jeffery, L., Hoe, K. L., Kim, D. U., Park, H. O., Salas-Pino, S., Heichinger, C. and Nurse, P. (2013) A genome-wide resource of cell cycle and cell shape genes of fission yeast. Open Biol. 3, 130053.   DOI
40 Hickman, M. J., Spatt, D. and Winston, F. (2011) The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 188, 325-338.   DOI
41 Ianiri, G. and Idnurm, A. (2015) Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. mBio 6, e02334-14.
42 Ulirsch, J. C., Verboon, J. M., Kazerounian, S., Guo, M. H., Yuan, D., Ludwig, L. S., Handsaker, R. E., Abdulhay, N. J., Fiorini, C., Genovese, G., Lim, E. T., Cheng, A., Cummings, B. B., Chao, K. R., Beggs, A. H., Genetti, C. A., Sieff, C. A., Newburger, P. E., Niewiadomska, E., Matysiak, M., Vlachos, A., Lipton, J. M., Atsidaftos, E., Glader, B., Narla, A., Gleizes, P. E., O'Donohue, M. F., Montel-Lehry, N., Amor, D. J., McCarroll, S. A., O'Donnell-Luria, A. H., Gupta, N., Gabriel, S. B., MacArthur, D. G., Lander, E. S., Lek, M., Da Costa, L., Nathan, D. G., Korostelev, A. A., Do, R., Sankaran, V. G. and Gazda, H. T. (2018) The genetic landscape of DiamondBlackfan anemia. Am. J. Hum. Genet. 103, 930-947.   DOI
43 Ito, Y., Hashimoto, M., Hirota, K., Ohkura, N., Morikawa, H., Nishikawa, H., Tanaka, A., Furu, M., Ito, H., Fujii, T., Nomura, T., Yamazaki, S., Morita, A., Vignali, D. A., Kappler, J. W., Matsuda, S., Mimori, T., Sakaguchi, N. and Sakaguchi, S. (2014) Detection of T cell responses to a ubiquitous cellular protein in autoimmune disease. Science 346, 363-368.   DOI
44 Jackson, R. J., Hellen, C. U. and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127.   DOI
45 Jallepalli, P. V. and Pellman, D. (2007) Cell biology. Aneuploidy in the balance. Science 317, 904-905.   DOI
46 Takemasa, I., Kittaka, N., Hitora, T., Watanabe, M., Matsuo, E., Mizushima, T., Ikeda, M., Yamamoto, H., Sekimoto, M., Nishimura, O., Doki, Y. and Mori, M. (2012) Potential biological insights revealed by an integrated assessment of proteomic and transcriptomic data in human colorectal cancer. Int. J. Oncol. 40, 551-559.   DOI
47 Torres, M., Condon, C., Balada, J. M., Squires, C. and Squires, C. L. (2001) Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both nonribosomal and ribosomal RNA antitermination. EMBO J. 20, 3811-3820.   DOI
48 Veitia, R. A. and Potier, M. C. (2015) Gene dosage imbalances: action, reaction, and models. Trends Biochem. Sci. 40, 309-317.   DOI
49 Wang, H., Ru, Y., Sanchez-Carbayo, M., Wang, X., Kieft, J. S. and Theodorescu, D. (2013) Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization. Clin. Cancer Res. 19, 2850-2860.   DOI
50 Visconte, V., Przychodzen, B., Han, Y., Nawrocki, S. T., Thota, S., Kelly, K. R., Patel, B. J., Hirsch, C., Advani, A. S., Carraway, H. E., Sekeres, M. A., Maciejewski, J. P. and Carew, J. S. (2017) Complete mutational spectrum of the autophagy interactome: a novel class of tumor suppressor genes in myeloid neoplasms. Leukemia 31, 505-510.   DOI
51 Parsons, A. B., Lopez, A., Givoni, I. E., Williams, D. E., Gray, C. A., Porter, J., Chua, G., Sopko, R., Brost, R. L., Ho, C. H., Wang, J., Ketela, T., Brenner, C., Brill, J. A., Fernandez, G. E., Lorenz, T. C., Payne, G. S., Ishihara, S., Ohya, Y., Andrews, B., Hughes, T. R., Frey, B. J., Graham, T. R., Andersen, R. J. and Boone, C. (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611-625.   DOI
52 Mukhopadhyay, R., Ray, P. S., Arif, A., Brady, A. K., Kinter, M. and Fox, P. L. (2008) DAPK-ZIPK-L13a axis constitutes a negativefeedback module regulating inflammatory gene expression. Mol. Cell 32, 371-382.   DOI
53 Warner, J. R. and McIntosh, K. B. (2009) How common are extraribosomal functions of ribosomal proteins? Mol. Cell 34, 3-11.   DOI
54 Weiss, R. L., Kukora, J. R. and Adams, J. (1975) The relationship between enzyme activity, cell geometry, and fitness in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 72, 794-798.   DOI
55 Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D. J., Lucau-Danila, A., Lussier, M., M'Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J. L., Riles, L., Roberts, C. J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R. K., Veronneau, S., Voet, M., Volckaert, G., Ward, T. R., Wysocki, R., Yen, G. S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M. and Davis, R. W. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901-906.   DOI
56 Nowosielski, M., Hoffmann, M., Wyrwicz, L. S., Stepniak, P., Plewczynski, D. M., Lazniewski, M., Ginalski, K. and Rychlewski, L. (2011) Detailed mechanism of squalene epoxidase inhibition by terbinafine. J. Chem. Inf. Model. 51, 455-462.   DOI
57 Ostrosky-Zeichner, L., Casadevall, A., Galgiani, J. N., Odds, F. C. and Rex, J. H. (2010) An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov. 9, 719-727.   DOI
58 Padyana, A. K., Gross, S., Jin, L., Cianchetta, G., Narayanaswamy, R., Wang, F., Wang, R., Fang, C., Lv, X., Biller, S. A., Dang, L., Mahoney, C. E., Nagaraja, N., Pirman, D., Sui, Z., Popovici-Muller, J. and Smolen, G. A. (2019) Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase. Nat. Commun. 10, 97.   DOI
59 Rancati, G., Moffat, J., Typas, A. and Pavelka, N. (2018) Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34-49.   DOI
60 Rodrigues, M. L. (2018) The Multifunctional fungal ergosterol. mBio 9, e01755-18.   DOI
61 Ryder, N. S. (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br. J. Dermatol. 126 Suppl 39, 2-7.   DOI
62 Zhou, X., Hao, Q., Liao, J. M., Liao, P. and Lu, H. (2013) Ribosomal protein S14 negatively regulates c-Myc activity. J. Biol. Chem. 288, 21793-21801.   DOI
63 Xu, F., Xu, C. Z., Gu, J., Liu, X., Liu, R., Huang, E., Yuan, Y., Zhao, G., Jiang, J., Xu, C., Chu, Y., Lu, C. and Ge, D. (2016) Eukaryotic translation initiation factor 3B accelerates the progression of esophageal squamous cell carcinoma by activating beta-catenin signaling pathway. Oncotarget 7, 43401-43411.   DOI
64 Zhang, Z., Li, C., Wu, F., Ma, R., Luan, J., Yang, F., Liu, W., Wang, L., Zhang, S., Liu, Y., Gu, J., Hua, W., Fan, M., Peng, H., Meng, X., Song, N., Bi, X., Gu, C., Zhang, Z., Huang, Q., Chen, L., Xiang, L., Xu, J., Zheng, Z. and Jiang, Z. (2015) Genomic variations of the mevalonate pathway in porokeratosis. Elife 4, e06322.   DOI