• Title/Summary/Keyword: Molecular target drug

Search Result 217, Processing Time 0.026 seconds

Expression, Purification and Properties of Shikimate Dehydrogenase from Mycobacterium Tuberculosis

  • Zhang, Xuelian;Zhang, Shunbao;Hao, Fang;Lai, Xuhui;Yu, Haidong;Huang, Yishu;Wang, Honghai
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.624-631
    • /
    • 2005
  • Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the main diseases to mankind. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. The shikimate pathway is onsidered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammalian cells. The Mycobacterium tuberculosis aroE-encoded shikimate dehydrogenase was cloned, expressed and purified. Sequence alignment analysis shows that shikimate dehydrogenase of Mycobacterium tuberculosis exhibit the pattern of G-X-(N/S)-V-(T/S)-X-PX-K, which is highly conserved within the shikimate dehydrogenase family. The recombinant shikimate dehydrogenase spectrum determined by CD spectroscopy showed that the percentages for $\alpha$-helix, $\beta$-sheet, $\beta$-turn, and random coil were 29.2%, 9.3%, 32.7%, and 28.8%, respectively. The enzymatic characterization demonstrates that it appears to be fully active at pH from 9.0 to 12, and temperature $63^{\circ}C$. The apparent Michaelis constant for shikimic acid and $NADP^+$ were calculated to be about $29.5\;{\mu}M$ and $63\;{\mu}M$. The recombinant shikimate dehydrogenase catalyzes the substrate in the presence of $NADP^+$ with an enzyme turnover number of $399\;s^{-1}$. Zymological studies suggest that the cloned shikimate dehydrogenase from M. tuberculosis has a pretty activity, and the work should help in the discovery of enzyme inhibitors and further of possible antimicrobial agents against Mycobacterium tuberculosis.

Lin28a attenuates TGF-β-induced renal fibrosis

  • Jung, Gwon-Soo;Hwang, Yeo Jin;Choi, Jun-Hyuk;Lee, Kyeong-Min
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.594-599
    • /
    • 2020
  • Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phosphorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.

Histone Deacetylase Inhibitor Trichostatin A Enhances Antitumor Effects of Docetaxel or Erlotinib in A549 Cell Line

  • Zhang, Qun-Cheng;Jiang, Shu-Juan;Zhang, Song;Ma, Xiao-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3471-3476
    • /
    • 2012
  • Background and Objective: Histone deacetylase (HDAC) inhibitors represent a promising class of potential anticancer agents for treatment of human malignancies. In this study, we investigated the effect of trichostatin A (TSA), one such HDAC inhibitor, in combination with docetaxel (TXT), a cytotoxic chemotherapy agent or erlotinib, a novel molecular target therapy drug, on lung cancer A549 cells. Methods: A549 cells were treated with TXT, erlotinib alone or in combination with TSA, respectively. Cell viability, apoptosis, and cell cycle distribution were evaluated using MTT (3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide) assay, Hochst33258 staining and flow cytometry. Moreover, immunofluorescent staining and Western blot analysis were employed to examine alterations of ${\alpha}$-tubulin, heat shock protein 90 (hsp90), epidermal growth factor receptor (EGFR), and caspase-3 in response to the different exogenous stimuli. Results: Compared with single-agent treatment, co-treatment of A549 cells with TSA/TXT or TSA/erlotinib synergistically inhibited cell proliferation, induced apoptosis, and caused cell cycle delay at the $G_2/M$ transition. Treatment with TSA/TXT or TSA/erlotinib led to a significant increase of cleaved caspase-3 expression, also resulting in elevated acetylation of ${\alpha}$-tubulin or hsp90 and decreased expression of EGFR, which was negatively associated with the level of acetylated hsp90. Conclusions: Synergistic anti-tumor effects are observed between TXT or erlotinib and TSA on lung cancer cells. Such combinations may provide a more effective strategy for treating human lung cancer.

Genomic Screening for Targets Regulated by Berberine in Breast Cancer Cells

  • Wen, Chun-Jie;Wu, Lan-Xiang;Fu, Li-Juan;Yu, Jing;Zhang, Yi-Wen;Zhang, Xue;Zhou, Hong-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6089-6094
    • /
    • 2013
  • Berberine, a common isoquinoline alkaloid, has been shown to possess anti-cancer activities. However, the underlying molecular mechanisms are still not completely understood. In the current study, we investigated the effects of berberine on cell growth, colony formation, cell cycle distribution, and whether it improved the anticancer efficiency of cisplatin and doxorubicin in human breast cancer estrogen receptor positive (ER+) MCF-7 cells and estrogen receptor negative (ER-) MDA-MB-231 cells. Notably, berberine treatment significantly inhibited cell growth and colony formation in the two cell lines, berberine in combination with cisplatin exerting synergistic growth inhibitory effects. Accompanied by decreased growth, berberine induced G1 phase arrest in MCF-7 but not MDA-MB-231 cells. To provide a more detailed understanding of the mechanisms of action of berberine, we performed genome-wide expression profiling of berberine-treated cells using cDNA microarrays. This revealed that there were 3,397 and 2,706 genes regulated by berberine in MCF-7 and MDA-MB-231 cells, respectively. Fene oncology (GO) analysis identified that many of the target genes were involved in regulation of the cell cycle, cell migration, apoptosis, and drug responses. To confirm the microarray data, qPCR analysis was conducted for 10 selected genes based on previously reported associations with breast cancer and GO analysis. In conclusion, berberine exhibits inhibitory effects on breast cancer cells proliferation, which is likely mediated by alteration of gene expression profiles.

Silymarin Modulates Cisplatin-Induced Oxidative Stress and Hepatotoxicity in Rats

  • Mansour, Heba Hosny;Hafez, Hafez Farouk;Fahmy, Nadia Mohamed
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.656-661
    • /
    • 2006
  • Cisplatin (CDDP) is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because silymrin has been used to treat liver disorders, the protective effect of silymarin on CDDP -induced hepatotoxicity was evaluated in rats. Hepatotoxicity was determined by changes in serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST], nitric oxide [NO] levels, albumin and calcium levels, and superoxide dismutase [SOD], glutathione peroxidase [GSHPx] activities, glutathione content, malondialdehyde [MDA] and nitric oxide [NO] levels in liver tissue of rats. Male albino rats were divided into four groups, 10 rats in each. In the control group, rats were injected i.p. with 0.2 ml of propylene glycol in saline 75/25 (v/v) for 5 consecutive days [Silymarin was dissolved in 0.2 ml of propylene glycol in saline 75/25 v/v]. The second group were injected with CDDP (7.5 mg /kg, I.P.), whereas animals in the third group were i.p. injected with silymarin at a dose of 100 mg/kg/day for 5 consecutive days. The Fourth group received a daily i.p. injection of silymarin (100 mg/kg/day for 5 days) 1 hr before a single i.p. injection of CDDP (7.5 mg/kg). CDDP hepatotoxicity was manifested biochemically by an increase in serum ALT and AST, elevation of MDA and NO in liver tissues as well as a decrease in GSH and the activities of antioxidant enzymes, including SOD, GSHPx in liver tissues. In addition, marked decrease in serum NO, albumin and calcium levels were observed. Serum ALT, AST, liver NO level, MDA was found to decreased in the combination group in comparison with the CDDP group. The activities of SOD, GSHPx, GSH and serum NO were lower in CDDP group than both the control and CDDP pretreated with silymarin groups. The results obtained suggested that silymarin significantly attenuated the hepatotoxicity as an indirect target of CDDP in an animal model of CDDP-induced nephrotoxicity.

Stabilization of the primary sigma factor of Staphylococcus aureus by core RNA polymerase

  • Mondal, Rajkrishna;Ganguly, Tridib;Chanda, Palas K.;Bandhu, Amitava;Jana, Biswanath;Sau, Keya;Lee, Chia-Y.;Sau, Subrata
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.176-181
    • /
    • 2010
  • The primary sigma factor ($\sigma^{A}$) of Staphylococcus aureus, a potential drug target, was little investigated at the structural level. Using an N-terminal histidine-tagged $\sigma^{A}$ (His-$\sigma^{A}$), here we have demonstrated that it exits as a monomer in solution, possesses multiple domains, harbors primarily $\alpha$-helix and efficiently binds to a S. aureus promoter DNA in the presence of core RNA polymerase. While both N- and C-terminal ends of His-$\sigma^{A}$ are flexible in nature, two Trp residues in its DNA binding region are buried. Upon increasing the incubation temperature from 25$^{\circ}$ to 40$^{\circ}C$, $\sim$60% of the input His-$\sigma^{A}$ was cleaved by thermolysin. Aggregation of His-$\sigma^{A}$ was also initiated rapidly at 45$^{\circ}C$. From the equilibrium unfolding experiment, the Gibbs free energy of stabilization of His-$\sigma^{A}$ was estimated to be +0.70 kcal $mol^{-1}$. The data together suggest that primary sigma factor of S. aureus is an unstable protein. Core RNA polymerase however stabilized $\sigma^{A}$ appreciably.

Ginsentology III;Identifications of Ginsenoside Interaction Sites for Ion Channel Regulation

  • Choi, Sun-Hye;Shin, Tae-Joon;Lee, Byung-Hwan;Lee, Jun-Ho;Hwang, Sung-Hee;Pyo, Mi-Kyung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • A ligand - whether an endogenous hormone, neurotransmitter, exogenous toxin or synthetic drug - binds to plasma membrane proteins (e.g., ion channels, receptors or other functional proteins) to exert its physiological or pharmacological effects. Ligands can also have functional groups, showing stereospecificity for interaction sites on their counterpart plasma membrane proteins. Previous reports have shown that the ginsenoside Rg$_3$, a bioactive ginsenoside, meets these criteria in that: 1) an aliphatic side chain of $Rg_3$ plays a role as a functional group, 2) Rg$_3$ regulates voltage- and ligand-gated ion channels in a stereospecific manner with respect to carbon-20, and 3) $Rg_3$ regulates subsets of ligand-gated and voltage-gated ion channels through specific interactions with identified amino acid residues inside the channel pore, in the outer pore entryway, or in toxin binding sites. Rg$_3$, therefore, could be a candidate for a novel ginseng-derived glycosidic ligand regulating ion channels and receptors. This review will examine how Rg$_3$ regulates voltage-gated and ligand-gated ion channels through interactions with its target proteins in the plasma membrane. Hopefully, this review will advance understanding of ginseng pharmacology at the cellular and molecular levels.

Recent Advances on the Study of Hsp90 Inhibitory Natural Products (Hsp90 저해기전을 가진 천연물들의 최근 연구동향)

  • Oh, Yeon Il;Kim, Nan A;Kim, Ye Hyun;Lee, Tae Hoon;Lee, Yong Sup
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.209-219
    • /
    • 2013
  • Heat shock protein 90 (Hsp90) is a molecular chaperone that assists protein folding and contributes to the stability of various proteins. It also stabilizes a number of proteins involved in tumor growth to consider it as a promising target for the treatment of cancer. Natural products have been a rich source of agents of value in medicine, therefore discovering lead compounds from them is one of important strategy in the drug development. In this regard, geldanamycin, radicicol, novobiocin and celastrol have been utilized as leads for the development of Hsp90 inhibitory anticancer agents. This review summerizes recent findings of natural products as Hsp90 inhibitiors. The Hsp90 inhibitory activities, mode of actions on Hsp90 and cytotoxicities on human cancer cell lines of natural products including bulgarialactone B, curcumin, (-)-gambogic acid, quercetin, sansalvamide A, silybin, and withaferin A were discussed.

G-Protein-Coupled Receptor 120 Mediates DHA-Induced Apoptosis by Regulating IP3R, ROS and, ER Stress Levels in Cisplatin-Resistant Cancer Cells

  • Shin, Jong-Il;Jeon, Yong-Joon;Lee, Sol;Lee, Yoon Gyeong;Kim, Ji Beom;Lee, Kyungho
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.252-261
    • /
    • 2019
  • The omega-3 fatty acid docosahexaenoic acid (DHA) is known to induce apoptosis and cell cycle arrest via the induction of reactive oxygen species (ROS) production and endoplasmic reticulum (ER) stress in many types of cancers. However, the roles of DHA in drug-resistant cancer cells have not been elucidated. In this study, we investigated the effects of DHA in cisplatin-resistant gastric cancer SNU-601/cis2 cells. DHA was found to induce ROS-dependent apoptosis in these cells. The inositol 1,4,5-triphosphate receptor ($IP_3R$) blocker 2-aminoethyl diphenylboninate (2-APB) reduced DHA-induced ROS production, consequently reducing apoptosis. We also found that G-protein-coupled receptor 120 (GPR120), a receptor of long-chain fatty acids, is expressed in SNU-601/cis2 cells, and the knockdown of GPR120 using specific shRNAs alleviated DHA-mediated ROS production and apoptosis. GPR120 knockdown reduced the expression of ER stress response genes, similar to the case for the pre-treatment of the cells with N-acetyl-L-cysteine (NAC), an ROS scavenger, or 2-APB. Indeed, the knockdown of C/EBP homologous protein (CHOP), a transcription factor that functions under ER stress conditions, markedly reduced DHA-mediated apoptosis, indicating that CHOP plays an essential role in the anti-cancer activity of DHA. These results suggest that GPR120 mediates DHA-induced apoptosis by regulating $IP_3R$, ROS, and ER stress levels in cisplatin-resistant cancer cells, and that GPR120 is an effective chemotherapeutic target for cisplatin resistance.

Effects of Pahs and Pcbs and Their Toxic Metabolites on Inhibition of Gjic and Cell Proliferation in Rat Liver Epithelial Wb-F344 Cells

  • Miroslav, Machala;Jan, Vondracek;Katerina, Chramostova;Lenka, Sindlerova;Pavel, Krcmar;Martina, Pliskova;Katerina, Pencikova;Brad, Upham
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • The liver progenitor cells could form a potential target cell population fore both tumor-initiating and -promoting chemicals. Induction of drug-metabolizing and antioxidant enzymes, including AhR-dependent CYP1A1, NQO-1 and AKR1C9, was detected in the rat liver epithelial WB-F344 "stem-like" cells. Additionally, WB-F344 cells express a functional, wild-type form of p53 protein, a biomarker of genotoxic events, and connexin 43, a basic structural unit of gap junctions forming an important type of intercellular communication. In this cellular model, two complementary assays have been established for detection of the modes of action associated with tumor promotion: inhibition of gap junctional intercellular communication (GJIC) and proliferative activity in confluent cells. We found that the PAHs and PCBs, which are AhR agonists, released WB-F344 cells from contact inhibition, increasing both DNA synthesis and cell numbers. Genotoxic effects of some PAHs that lead to apoptosis and cell cycle delay might interfere with the proliferative activity of PAHs. Contrary to that, the nongenotoxic low-molecular-weight PAHs and non-dioxin-like PCB congeners, abundant in the environment, did not significantly affect cell cycle and cell proliferation; however both groups of compounds inhibited GJIC in WB-F344 cells. The release from contact inhibiton by a mechanism that possibly involves the AhR activation, inhibition of GJIC and genotoxic events induced by environmental contaminants are three important modes of action that could play an important role in carcinogenic effects of toxic compounds. The relative potencies to inhibit GJIC, to induce AhR-mediated activity, and to release cells from contact inhibition were determined for a large series of PAHs and PCBs and their metabolites. In vitro bioassays based on detection of events on cellular level (deregulation of GJIC and/or proliferation) or determination of receptor-mediated activities in both ?$stem-like^{\circ}{\times}$ and hepatocyte-like liver cellular models are valuable tools for detection of modes of action of polyaromatic hydrocarbons. They may serve, together with concentration data, as a first step in their risk assessment.

  • PDF