Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.3.176

Stabilization of the primary sigma factor of Staphylococcus aureus by core RNA polymerase  

Mondal, Rajkrishna (Department of Biochemistry, Bose Institute)
Ganguly, Tridib (School of Life Sciences, IISER)
Chanda, Palas K. (Department of Biochemistry, Bose Institute)
Bandhu, Amitava (Department of Biochemistry, Bose Institute)
Jana, Biswanath (Department of Biochemistry, Bose Institute)
Sau, Keya (School of Biotechnology and Life Sciences, Haldia Institute of Technology)
Lee, Chia-Y. (Department of Microbiology and Immunology, University of Arkansas for Medical Sciences)
Sau, Subrata (Department of Biochemistry, Bose Institute)
Publication Information
BMB Reports / v.43, no.3, 2010 , pp. 176-181 More about this Journal
Abstract
The primary sigma factor ($\sigma^{A}$) of Staphylococcus aureus, a potential drug target, was little investigated at the structural level. Using an N-terminal histidine-tagged $\sigma^{A}$ (His-$\sigma^{A}$), here we have demonstrated that it exits as a monomer in solution, possesses multiple domains, harbors primarily $\alpha$-helix and efficiently binds to a S. aureus promoter DNA in the presence of core RNA polymerase. While both N- and C-terminal ends of His-$\sigma^{A}$ are flexible in nature, two Trp residues in its DNA binding region are buried. Upon increasing the incubation temperature from 25$^{\circ}$ to 40$^{\circ}C$, $\sim$60% of the input His-$\sigma^{A}$ was cleaved by thermolysin. Aggregation of His-$\sigma^{A}$ was also initiated rapidly at 45$^{\circ}C$. From the equilibrium unfolding experiment, the Gibbs free energy of stabilization of His-$\sigma^{A}$ was estimated to be +0.70 kcal $mol^{-1}$. The data together suggest that primary sigma factor of S. aureus is an unstable protein. Core RNA polymerase however stabilized $\sigma^{A}$ appreciably.
Keywords
Primary sigma factor; Stability; Staphylococcus aureus; Structure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Chanda, P. K., Ganguly, T., Das, M., Lee, C. Y., Luong, T. T. and Sau, S.(2007) Detection of antistaphylococcal and toxic compounds by biological assay systems developed with a reporter Staphylococcus aureus strain harboring a heat inducible promoter - lacZ transcriptional fusion. J. Biochem. Mol. Biol. 40, 936-943   DOI   PUBMED
2 Tyson, P. A. and Steinberg, M. (1987) Accessibility of tryptophan residues in Na, K-ATPase. J. Biol. Chem. 262, 4644-4648   PUBMED
3 Greene, R. F. Jr. and Pace, C. N. (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta lactoglobulin. J. Biol. Chem. 249, 5388-5393   PUBMED
4 Vassylyeva, M. N., Lee, J., Sekine, S. I., Laptenko, O., Kuramitsu, S., Shibata, T., Inoue, Y., Borukhov, S., Vassylyev, D. G. and Yokoyama, S. (2002) Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus. Acta Crystallogr. D. Biol. Crystallogr. 58, 1497-1500   DOI   ScienceOn
5 Nagai, H. and Shimamoto, N. (1997). Regions of the Escherichia coli primary sigma factor sigma70 that are involved in interaction with RNA polymerase core enzyme. Genes Cells 2, 725-734   DOI   ScienceOn
6 Ganguly, T., Das, M., Bandhu, A., Chanda, P. K., Jana, B., Mondal, R. and Sau, S. (2009) Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage phi11. FEBS J. 276, 1975-1985   DOI   PUBMED   ScienceOn
7 Das, M., Ganguly, T., Chattoraj, P., Chanda, P. K., Bandhu, A., Lee, C. Y. and Sau, S. (2007) Overexpression, purification and characterization of repressor of temperate S. aureus phage $\phi11$. J. Biochem. Mol. Biol. 40, 740-748   DOI
8 Draghi, D. C., Sheehan, D. F., Hogan, P. and Sahm, D. F. (2006) Current antimicrobial resistance profiles among methicillin resistant Staphylococcus aureus encountered in the outpatient setting. Diagn. Microbiol. Infect. Dis. 55, 129-133   DOI   ScienceOn
9 Wessel, D. and Fugge, U. I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry 138, 141-143   DOI   ScienceOn
10 Ganguly, T., Bandhu, A., Chattoraj, P., Chanda, P. K., Das, M., Mandal, N. C. and Sau, S. (2007) Repressor of temperate mycobacteriophage L1 harbors a stable C-terminal domain and binds to different asymmetric operator DNAs with variable affinity. Virol. J. 4, 64   DOI   ScienceOn
11 Das, M., Ganguly, T., Bandhu, A., Mondal, R., Chanda, P. K., Jana, B. and Sau, S. (2009) Moderately thermostable phage Phi11 Cro repressor has novel DNA-binding capacity and physicochemical properties. BMB Rep. 42, 160-165   DOI   PUBMED   ScienceOn
12 Chang, B. Y. and Doi, R. H. (1993) Conformational properties of Bacillus subtilis RNA polymerase sigma A factor during transcription initiation. Biochem. J. 294, 43-47   DOI   PUBMED
13 Wen, Y. D., Liao, C. T., Liou, K. M., Wang, W. H., Huang, W. C. and Chang, B. Y. (2000) Structural and functional properties of a Bacillus subtilis temperature- sensitive sigma(A) factor. Proteins 40, 613-622   DOI   ScienceOn
14 Chopra , I. (2007) Bacterial RNA polymerase: a promising target for the discovery of new antimicrobial agents. Curr. Opin. Investig. Drugs 8, 600-607   PUBMED
15 Bergendahl, V., Heyduk, T. and Burgess, R. R. (2003) Luminescence Resonance Energy Transfer-Based High-Throughput Screening Assay for Inhibitors of Essential Protein-Protein Interactions in Bacterial RNA Polymerase. Appl. Environ. Microbiol. 69, 1492-1498   DOI   ScienceOn
16 Sau, S., Chattoraj, P., Ganguly, T., Chanda, P. K. and Mandal, N. C. (2008) Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery. Curr. Protein Pept. Sci. 9, 284-290   DOI   ScienceOn
17 Deora, R. and Misra, T. K. (1996) Characterization of the primary sigma factor of Staphylococcus aureus. J. Biol. Chem. 271, 21828-21834   DOI   ScienceOn
18 Borukhov, S. and Nudler, E. (2003) RNA polymerase holoenzyme: structure, function and biological implications. Curr. Opin. Microbiol. 6, 93-100   DOI   ScienceOn
19 Paget, M. S. and Helmann, J. D. (2003) The sigma70 family of sigma factors. Genome Biol. 4, 203   DOI   PUBMED
20 Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, CSH, New York, USA
21 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1998) Current Protocols in Molecular Biology. John Wiley & Sons, Inc., USA
22 Bohm, G., Muhr, R. and Jaenicke, R. (1992) Quantitative analysis of protein far UVcircular dichroism spectra by neural networks. Protein Eng. 5, 191-195   DOI   PUBMED
23 Somerville, G. A. and Proctor, R. A. (2009) At the Crossroads of Bacterial Metabolism and Virulence Factor Synthesis in Staphylococci. Microbiol. Mol. Biol. Rev. 73, 233-248   DOI   ScienceOn
24 Deora, R. and Misra, T. K. (1995) Purification and characterization of DNA dependent RNA polymerase from Staphylococcus aureus. Biochem. Biophys. Res. Commun. 208, 610-616   DOI   ScienceOn
25 Novick, R. P (2006) Staphylococcal pathogenesis and pathogenicity factors: genetics and regulation, in Grampositive Pathogens, 2nd ed. Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A. and Rood, J. I. (eds.), pp. 496-516, ASM Press, Washington DC, USA
26 Severinova, E., Severinov, K., Fenyo, D., Marr, M., Brody, E. N., Roberts, J. W., Chait, B. T. and Darst, S. A. (1996) Domain organization of the Escherichia coli RNA poly merase sigma 70 subunit. J. Mol. Biol. 263, 637-647   DOI   ScienceOn