Browse > Article

Recent Advances on the Study of Hsp90 Inhibitory Natural Products  

Oh, Yeon Il (Department of Life and Nanopharmaceutical Science & Department of Pharmacy, College of Pharmacy, Kyung Hee University)
Kim, Nan A (Department of Oriental Pharmaceutical Science & Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University)
Kim, Ye Hyun (Department of Oriental Pharmaceutical Science & Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University)
Lee, Tae Hoon (Department of Oriental Pharmaceutical Science & Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University)
Lee, Yong Sup (Department of Life and Nanopharmaceutical Science & Department of Pharmacy, College of Pharmacy, Kyung Hee University)
Publication Information
Korean Journal of Pharmacognosy / v.44, no.3, 2013 , pp. 209-219 More about this Journal
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that assists protein folding and contributes to the stability of various proteins. It also stabilizes a number of proteins involved in tumor growth to consider it as a promising target for the treatment of cancer. Natural products have been a rich source of agents of value in medicine, therefore discovering lead compounds from them is one of important strategy in the drug development. In this regard, geldanamycin, radicicol, novobiocin and celastrol have been utilized as leads for the development of Hsp90 inhibitory anticancer agents. This review summerizes recent findings of natural products as Hsp90 inhibitiors. The Hsp90 inhibitory activities, mode of actions on Hsp90 and cytotoxicities on human cancer cell lines of natural products including bulgarialactone B, curcumin, (-)-gambogic acid, quercetin, sansalvamide A, silybin, and withaferin A were discussed.
Keywords
heat shock protein 90; natural products; inhibitors; anticancer agents; bulgarialactone B; curcumin; (-)-gambogic acid; sansalvamide A; withaferin A;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Belofsky, G. N., Jensen, P. R. and Fenical, W. (1999) Sansalvamide: A new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus fusarium. Tetrahedron Lett. 40: 2913-2916.   DOI
2 Levy, J., Teuerstein, I., Marbach, M., Radian, S. and Sharoni, Y. (1984) Tyrosine protein kinase activity in the DMBAinduced rat mammary tumor: Inhibition by quercetin. Biochem. Biophys. Res. Chem. 123: 1227-1233.   DOI
3 Cueto, M., Jensen, P. R. and Fenical, W. (2000) N-Meth ylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus fusarium. Phytochem. 55: 223-226.   DOI
4 Hwang, Y., Rowley, D., Rhodes, D., Gertsch, J., Fenical, W. and Bushman, F. (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol. Pharmacol. 55: 1049-1053.
5 Styers, T. J., Kekec, A., Rodriguez, R. A., Brown, J. D., Cajica, J., Pan, P. S., Parry, E., Carroll, C. L., Medina, I., Corral, R., Lapera, S., Otrubova, K., Pan, C. M., Mcguire, K. L. and Mcalpine, S. R. (2006) Synthesis of sansalvamide A derivatives and their cytotoxicity in the MSS colon cancer cell line HT-29. Bioorg. Med. Chem. 14: 5625-5631.   DOI
6 Rodriguez, R. A., Pan, P. S., Pan, C. M., Ravula, S., Lapera, S. A., Singh, E. K., Styers, T. J., Brown, J. D., Cajica, J., Parry, E., Otrubova, K. and Mcalpine, S. R. (2007) Synthesis of second-generation sansalvamide A derivatives: Novel templates as potential antitumor agents. J. Org. Chem. 72: 1980- 2002.   DOI
7 Pan, P. S., Vasko, R. C., Lapera, S. A., Johnson, V. A., Sellers, R. P., Lin, C. C., Pan, C. M., Davis, M. R., Ardi, V. C. and Mcalpine, S. R. (2009) A comprehensive study of sansalvamide A derivatives: The structure-activity relationships of 78 derivatives in two pancreatic cancer cell lines. Bioorg. Med. Chem. 17: 5806-5825.   DOI
8 Gazak, R., Walterova, D. and Kren, V. (2007) Silybin and silymarin-new and emerging applications in medicine. Curr. Med. Chem. 14: 315-338.   DOI
9 Vasko, R. C., Rodriguez, R. A., Cunningham, C. N., Ardi, V. C., Agard, D. A. and Mcalpine, S. R. (2010) Mechanistic studies of sansalvamide A-amide: An allosteric modulator of Hsp90. ACS Med. Chem. Lett. 1: 4-8.   DOI
10 Sellers, R. P., Alexander, L. D. and Johnson, V. A. (2010) Design and synthesis of Hsp90 inhibitors: exploring the SAR of sansalvamide A derivatives. Bioorg. Med. Chem. 18: 6822-6856.   DOI
11 Hannay, J. A. and Yu, D. (2003) Silibinin: a thorny therapeutic for EGF-R expressing tumors? Cancer. Biol. Ther. 2: 532-533.
12 Lu, P., Mamiya, T., Lu, L. L., Mouri, A., Niwa, M., Hiramatsu, M., Zou, L. B., Nagai, T., Ikejima, T. and Nabeshima, T. (2009) Silibinin attenuates amyloid beta(25-35) peptideinduced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J. Pharmacol. Exp. Ther. 331: 319-326.   DOI
13 Zhao, H., Brandt, G. E., Galam, L., Matts, R. L. and Blagg, B. S. (2011) Identification and initial SAR of silybin: An Hsp90 inhibitor. Bioorg. Med. Chem. Lett. 21: 2659-2664.   DOI
14 Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432: 316-323.   DOI
15 Winters, M. (2006) Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern. Med. Rev. 11: 269-277.
16 Mishra, L., Singh, B. and Dagenias, S. (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern. Med. Rev. 5: 334-336.
17 Matsuda, H., Murakami, T., Kishi, A. and Yoshikawa, M. (2001) Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera Dunal. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg. Med. Chem. 9: 1499-1507.   DOI
18 Ray, A. and Gupta, M. (1994) Withasteroids, a growing group of naturally occurring steroidal lactones. Fortschr. Chem. Org. Naturst. 63: 1-106.
19 Alhindawi, M. K., Alkhafaji, S. H. and Abdulnabi, M. H. (1992) Anti-granuloma activity of Iraqi Withania-somnifera. J. Ethnopharmacol. 37: 113-116.   DOI
20 Owais, M., Sharad, K. S., Shehbaz, A. and Saleemuddin, M. (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12: 229-235.   DOI
21 Bhattacharya, A., Ghosal, S. and Bhattacharya, S. K. (2001) Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J. Ethnopharmacol. 74: 1-6.   DOI
22 Yu, Y. K., Hamza, A., Zhang, T., Gu, M. C., Zou, P., Newman, B., Li, Y. Y., Gunatilaka, A. A. L., Zhan, C. G. and Sun, D. X. (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem. Pharmacol. 79: 542-551.   DOI
23 Chiosis, G. (2006) Targeting chaperones in transformed systems - a focus on Hsp90 and cancer. Expert Opin. Ther. Targets 10: 37-50.   DOI
24 Neckers, L. (2003) Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr. Med. Chem. 10: 733-739.   DOI
25 Grover, A., Shandilya, A., Agrawal, V., Pratik, P., Bhasme, D., Bisaria, V. S. and Sundar, D. (2011) Hsp90/Cdc37 Chaperone/ co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug withaferin A. BMC Bioinformatics 12: Suppl 1:S30.   DOI
26 Yu, Y., Hamza, A., Zhang, T., Gu, M., Zou, P., Newman, B., Li, Y., Gunatilaka, A. A., Zhan, C. G. and Sun, D. (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem. Pharmacol. 79: 542-551.   DOI
27 Fukuyo, Y., Hunt, C. R. and Horikoshi, N. (2010) Geldanamycin and its anti-cancer activities. Cancer Lett. 290: 24-35.   DOI
28 Pearl, L. H. and Prodromou, C. (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75: 271-294.   DOI
29 Gimnez Ortiz, A. and Montalar Salcedo, J. (2010) Heat shock proteins as targets in oncology. Clin. Transl. Oncol. 12: 166-173.   DOI
30 Pearl, L. H., Prodromou, C. and Workman, P. (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410: 439-453.   DOI
31 Uehara, Y., Hori, M., Takeuchi, T. and Umezawa, H. (1986) Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with rous sarcoma virus. Mol. Cell. Biol. 6: 2198-2206.
32 Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295: 1852-1858.   DOI
33 Jez, J. M., Chen, C., Rastelli, G., Stroud, R. M. and Santi, D. V. (2003) Crystal structure and molecular modeling of 17- DMAG in complex with human Hsp90. Chem. Biol. 10: 361-368.   DOI
34 Solit, D. B. (2008) Phase II trial of 17-allylamino-17- demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res. 40: 8302-8307.
35 Amolins, M. W. and Blagg, B. S. J. (2009) Natural product inhibitors of Hsp90: Potential leads for drug discovery. Mini- Rev. Medi. Chem. 9: 140-152   DOI
36 Buchner, J. (1999) Hsp90 & Co. a holding for folding. Trends Biochem. Sci. 24: 136-142.   DOI
37 Mayer, M. P. and Bukau, B. (2005) Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62: 670-684.   DOI
38 Blagg, B. S. J. and Kerr, T. D. (2006) Hsp90 inhibitors: Small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation Med. Res. Rev. 26: 310-338.   DOI
39 한지숙 (2007) 항암제 및 퇴행성 신경질환 치료제로써의 Hsp90 억제제 개발 동향, Biochemistry and Molecular Biology News 12월호. 1-6.
40 Schlesinger, M. J. (1994) How the cell copes with stress and the function of heat shock proteins. Pediatr. Res. 36: 1-6.   DOI
41 Donnelly, A. and Blagg, B. S. (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem. 15: 2702-2717.   DOI
42 Adams, J. and Elliot, P. J. (2000) New agents in cancer clinical trials. Oncogene 19: 6687-6892.   DOI
43 Karapanagiotou, E. M., Syrigos, K. and Saif, M. W. (2009) Heat shock protein inhibitors and vaccines as new agents in cancer treatment. Expert Opin. Investig. Drugs. 18: 161-174.   DOI
44 Pratt, W. B., Galigniana, M. D., Harrell, J. M. and DeFranco, D. B. (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16: 857-872.   DOI
45 Zhang, H. and Burrows, F. (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. 82: 488-499.
46 Neckers, L. and Ivy, S. P. (2003) Heat shock protein 90. Curr. Opin. Oncol. 15: 419-424.   DOI
47 Neckers, L. and Neckers, K. (2002) Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opin. Emerg. Drugs. 7: 277-288.   DOI
48 Nimmanapalli, R., O'Bryan, E. and Bhalla, K. (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res. 61: 1799-1804.
49 Xu, W. and Neckers, L. (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin. Cancer Res. 13: 1625-1629.   DOI
50 Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer review. Cell 100: 57-70.   DOI
51 Becker, B. (2004) Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol. 13: 27-32.
52 Chiosis, G., Huezo, H., Rosen, N., Mimnaugh, E., Whitesell, L. and Neckers, L. (2003) 17AAG: Low target binding affinity and potent cell activity finding an explanation. Mol. Cancer Ther. 2: 123-129.   DOI
53 Workman, P., Burrows, F., Neckers, L. and Rosen, N. (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci. 1113: 202-216.   DOI
54 Sreedhar, A. S., Kalmar, E., and Csermely, P. (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562: 11-15.   DOI
55 Schnur, R. C., Corman, M. L., Gallaschun, R. J., Cooper, B. A., Dee, M. F., Doty, J. L., Muzzi, M. L., DiOrio, C. I., Barbacci, E. G., Miller, P. E., Pollack, V. A., Savage, D. M., Sloan, D. E., Pustilnik, L. R., Moyer, J. D. and Moyer, M. P. (1995) erbB-2 oncogene inhibition by geldanamycin derivatives: Synthesis, mechanism of action, and structure-activity relationships. J. Med. Chem. 38: 3813-3820.   DOI
56 Hossain, C. F., Okuyama, E. and Yamazaki, M. (1996) A new series of coumarin derivatives having monoamine oxidase inhibitory activity from Monascus anka. Chem. Pharm. Bull. 44: 1535-1539.   DOI
57 Yasukawa, K., Takahashi, M., Natori, S., Kawai, K., Yamazaki, M., Takeuchi, M. and Takido, M. (1994) Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. Oncology 51: 108-112.   DOI
58 Knecht, A. and Humpf, H. U. (2006) Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol. Nutr. Food Res. 50: 406-412.   DOI
59 Akihisa, T., Tokuda, H., Ukiwa, M., Kivota, A., Yasukawa, K., Sakamoto, N., Kimura, Y., Suzuki, T., Takayasu, J. and Nishino, H. (2005) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). J. Chem. Biodivers. 2: 1305-1309.   DOI
60 Akihisa, T., Tokuda, H., Yasukawa, K., Ukiwa, M., Kivota, A., Sakamoto, N., Suzuki, T., Tanabe, N., Nishino, H. and Kavasu, J. (2005) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J. Agric. Food Chem. 53: 562-565.   DOI
61 Su, N. W., Lin, Y. L., Lee, M. H. and Ho, C. H. (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J. Agric. Food Chem. 53: 1949-1954.   DOI
62 Omura, S., Tanaka, H., Ikead, H. and Masuma, R. (1993) Isochromophilones I and II, novel inhibitors against gp120-CD4 binding from Penicillium sp. J. Antibiot. 46: 1908-1911.   DOI
63 Kono, K., Tanaka, M., Ono, Y., Hosoya, T., Ogita, T. and Kohama, T. (2001) S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J. Antibiot. 54: 415-420.   DOI
64 Musso, L., Dallavalle, S. and Merlini, L. (2010) Natural and semisynthetic azaphilones as a new scaffold for Hsp90 inhibitors. Bioorg. Med. Chem. 18: 6031-6043.   DOI
65 Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner S. and Wright, W. E. (1998) Extension of lifespan by introduction of telomerase into normal human cells. Science 279: 349-352.   DOI
66 Patel, H. J., Modi, S., Chiosis, G. and Taldone, T. (2011) Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin. Drug Discov. 6: 559-587.   DOI
67 Ammon, H. P. and Wahl, M. A. (1991) Pharmacology of Curcuma longa. Planta Med. 57: 1-7.   DOI
68 Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L. C., Coviello, G. M., Wright, W. E., Weinrich, S. L. and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011-2015.   DOI
69 Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W. and Weinberg, R. A. (1999) Creation of human tumour cells with defined genetic elements. Nature 400: 464-468.   DOI
70 Seimiya, H., Sawada, H., Muramatsu, Y., Shimizu, M., Ohko, K., Yamane, K. and Tsuruo, T. (2000) Involvement of 14-3- 3 proteins in nuclear localization of telomerase. EMBO J. 19: 2652-2661.   DOI
71 Keppler, B. R., Grady, A. T. and Jarstfer. M. B. (2006) The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J. Biol. Chem. 281: 19840-19848.   DOI
72 Holt, S. E., Aisner, D. L., Baur, J., Tesmer, V. M., Dy, M., Ouellette, M., Trager, J. B., Morin, G. B. Toft, D. O., Shay, J. W., Wright, W. E. and White, M. A. (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13: 817-826.   DOI
73 Davenport, J., Manjarrez, J. R., Peterson, L., Krumm, B., Blagg, B. S. and Matts, R. L. (2011) Gambogic acid, a natural product inhibitor of Hsp90. J. Nat. Prod. 74: 1085-1092.   DOI
74 Forsythe, H. L., Jarvis, J. L., Turner, J. W., Elmore, L. W. and Holt, S. E. (2001) Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J. Biol. Chem. 276: 15571-15574.   DOI
75 Lee, J. H. and Chung, I. K. (2010) Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett. 290: 76-86.   DOI
76 Teiten, M. H., Reuter, S., Schmucker, S., Dicato, M. and Diederich, M. (2009) Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett. 279: 145-154.   DOI
77 Yang, Y., Yang, L., You, Q. D., Nie, F. F., Gu, H. Y., Zhao, L., Wang, X. T. and Guo, Q. L. (2007) Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett. 256: 259-266.   DOI
78 Zhao, L., Guo, Q. L., You, Q. D., Wu, Z. Q. and Gu, H. Y. (2004) Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. Biol. Pharm. Bull. 27: 998-1003.   DOI
79 Kim, J. E., Kim, A. R., Kim, M. J. and Park, S. N. (2011) Antibacterial, antioxidative and antiaging effects of Allium cepa peel extracts. Appl. Chem. Eng. 22: 178-184.
80 Pandey, M. K., Sung, B., Ahn, K. S., Kunnumakkara, A. B., Chaturvedi, M. M. and Aggarwal, B. B. (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNFinduced apoptosis through modulation of the nuclear factorkappaB signaling pathway. Blood 110: 3517-3525.   DOI
81 Ortiz-Sanchez, E., Daniels, T. R., Helguera, G., Martinez- Maza, O., Bonavida, B. and Penichet, M. L. (2009) Enhanced cytotoxicity of an anti-transferrin receptor IgG3-avidin fusion protein in combination with gambogic acid against human malignant hematopoietic cells: Functional relevance of iron, the receptor, and reactive oxygen species. Leukemia 23: 59-70.   DOI
82 Galam, L., Hadden, M. K., Ma, Z., Ye, Q. Z., Yun, B. G., Blagg, B. S. and Matts, R. L. (2007) High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90- dependent refolding of firefly luciferase. Bioorg. Med. Chem. 15: 1939-1946.   DOI
83 Ren, Y., Yuan, C., Chai, H. B., Ding, Y., Li, X. C., Ferreira, D. and Kinghorn, A. D. (2011) Absolute configuration of (-)- gambogic acid, an antitumor agent. J. Nat. Prod. 74: 460-463.   DOI
84 Powers, M. V. and Workman, P. (2007) Inhibitors of the heat shock response: Biology and pharmacology. FEBS Lett. 581: 3758-3769.   DOI
85 Nagai, N., Nakai, A. and Nagata, K. (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem. Biophys. Res. Commun. 208: 1099-1105.   DOI
86 Aalinkeel, R., Bindukumar, B., Reynolds, J. L., Sykes, D. E., Mahajan, S. D., Chadha, K. C. and Schwartz, S. A. (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. The Prostate 68: 1773-1789.   DOI
87 Matter, W. F., Brown, R. F. and Vlahos, C. J. (1992) The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs. Biochem. Biophys. Res. Commun. 186: 624-631.   DOI