• 제목/요약/키워드: Molecular simulations

검색결과 508건 처리시간 0.022초

연료전지용 수소이온 교환막의 분자동역학 연구 (Molecular Dynamics (MD) Study of Proton Exchange Membranes for Fuel Cells)

  • 박치훈;남상용;홍영택
    • 멤브레인
    • /
    • 제26권5호
    • /
    • pp.329-336
    • /
    • 2016
  • 수소이온 교환막(PEM; Proton Exchange Membrane)은 연료전지 막-전극 복합체(MEA; Membrane-electrode Assembly)를 구성하는 핵심 소재 중 하나로서, 촉매와 함께 연료전지 성능을 결정하는 중요한 역할을 한다. 이러한 수소이온교환막의 성능은 내부에 존재하는 수소이온 전달 통로인 수화 채널의 구조에 큰 영향을 받는 것으로 알려져 있다. 분자 동역학(MD; Molecular Dynamics) 전산모사 기술은 이러한 소재 내부의 분자 및 원자구조를 파악하기 위한 유용한 도구로서, 수소이온 교환막의 구조 및 특성에 관한 많은 관련 연구가 진행되고 있다. 본 총설에서는 분자동역학 전산모사 관련 연구에 대한 동향을 정리하고, 이를 통해 어떤 구조적 특징들을 분석할 수 있는지 제시하여, 수소이온 교환막 연구자들과 분리막 연구자들에게 분자동역학 전산모사 기술의 유용성에 대하여 소개하고자 한다.

Molecular dynamics simulation of bulk silicon under strain

  • Zhao, H.;Aluru, N.R.
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.303-315
    • /
    • 2008
  • In this paper, thermodynamical properties of crystalline silicon under strain are calculated using classical molecular dynamics (MD) simulations based on the Tersoff interatomic potential. The Helmholtz free energy of the silicon crystal under strain is calculated by using the ensemble method developed by Frenkel and Ladd (1984). To account for quantum corrections under strain in the classical MD simulations, we propose an approach where the quantum corrections to the internal energy and the Helmholtz free energy are obtained by using the corresponding energy deviation between the classical and quantum harmonic oscillators. We calculate the variation of thermodynamic properties with temperature and strain and compare them with results obtained by using the quasi-harmonic model in the reciprocal space.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

나노 인덴테이션에 의한 나노재료의 경도예측 (1) 나노 인덴테이션에서 압자 밑 재료의 나노거동 (Nano-behavior of material beneath an indenter in nanoindentation)

  • 김진;박준원;김영석;이승섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.111-115
    • /
    • 2003
  • Nanoindentation is simply an indentation test in which the length scale of the penetration is measured in nanometres rather than microns or millimetres, the latter being common in conventional hardness tests. Three-dimensional molecular dynamics simulations have been conducted to evaluate the nanoindentation test. Molecular dynamics simulations were carried out on single crystal copper by varying crystal orientations to investigate nano-behavior of material beneath an indenter in nanoindentation. Morse potential function was used as an interatomic force between indenter and thin film. The result of the simulation shows that crystal orientation significantly influenced the slip system, dislocation nucleation and dislocation behavior.

  • PDF

산란 및 투과된 수소 이온의 분자 전산 연구 I. 니켈 (100) 표면의 직각 입사 (Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions I. Normal Incident Angle to Ni (100) Surface)

  • 서숭혁;민웅기
    • 한국수소및신에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.127-136
    • /
    • 2000
  • Molecular dynamics simulations have been carried out to investigate the scattering and penetration properties of hydrogen ions with the normal incident angle to Ni (100) surface. The initial kinetic energies of hydrogen ions range from 100 to 1,600 eV. The simulation results are used to assess the applicabilities of theoretical predictions based on the binary collision approximation, and, in the high kinetic regime, theoretical results for scattering energies were shown to he a good agreement with molecular simulations. The angle dependencies on both scattering and penetration distributions were found in the longitudinal direction, but not in the azimuthal direction except for the high kinetic energy of 1,600 eV.

  • PDF

원자간력 현미경 탄소 나노튜브 팁을 이용한 플러렌 나노 구조물 제작에 관한 분자동역학 시뮬레이션 (Molecular Dynamics Simulations of Fullerene Nanostructure Fabrications by Atomic Force Microscope Carbon Nanotube tip)

  • 이준하;이홍주
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.812-822
    • /
    • 2004
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

탄소나노튜브의 역학적 거동에 관한 분자동역학 전산모사 (Molecular Dynamics Simulations on the Mechanical Behavior of Carbon Nanotube)

  • 박종연;이영민;전석기;김성엽;임세영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1083-1088
    • /
    • 2003
  • Molecular dynamics simulations on the deformation behavior of single-walled carbon nanotube are performed. Formation energies of CNT's by interatomic potentials are computed and compared with ab initio results. Bending and axial compression are applied under lattice statics and NVT ensemble conditions. Specifically, we focus on the mechanism of kink formation in bending. The simulation results are comprehensively explained in the framework of atomistic energetics. The effects of temperature and chirality on the deformation of carbon nanotube are also studied.

  • PDF

Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2931-2936
    • /
    • 2013
  • This paper presents results for the calculation of transport properties of noble gases (He, Ne, Ar, Kr, and Xe) at 273.15 K and 1.00 atm using equilibrium molecular dynamics (EMD) simulations through a Lennard-Jones (LJ) intermolecular potential. We have utilized the revised Green-Kubo formulas for the stress (SAC) and the heat-flux auto-correlation (HFAC) functions to estimate the viscosities (${\eta}$) and thermal conductivities (${\lambda}$) of noble gases. The original Green-Kubo formula was employed for diffusion coefficients (D). The results for transport properties (D, ${\eta}$, and ${\lambda}$) of noble gases at 273.15 and 1.00 atm obtained from our EMD simulations are in a good agreement with the rigorous results of the kinetic theory and the experimental data. The radial distribution functions, mean square displacements, and velocity auto-correlation functions of noble gases are remarkably different from those of liquid argon at 94.4 K and 1.374 $g/cm^3$.

고압력하에서의 $\alpha-quartz$$\alpha-quartz$$GeO_2$의 상전이에 관한 분자동력학시뮬레이션 (Molecular Dynamic Simulations of the Phase Transition of $\alpha-quartz$ and $\alpha-quartz-type$-type $GeO_2$ under High Pressure)

  • 김대원;노광수;최희락;성태현
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.713-721
    • /
    • 1997
  • Molecular dynamic (MD) simulations with new interatomic potential function including the covalent bond were performed on the phase transition of $\alpha$-quartz-type GeO2 under high pressure. The optimized crystal structure and the pressure dependence of the lattice constant showed higher reproducibility than the previous models and were in very good agreement with the experimental data. A phase transition of $\alpha$-quartz and $\alpha$-quartz-type GeO2 by simulation was found approximately 24 GPa and 6-7 GPa, respectively. This phase transition involved an abrupt volume shrinkage and showed 4-6 coordination mixed structure with the increasing in the coordination number of cation.

  • PDF

Modeling of Liquid-Vapor Interfaces of Condensation Flows Based on Molecular Dynamics Simulations

  • Kannan, Hiroki;Teramoto, Susumu;Nagashima, Toshio
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.418-425
    • /
    • 2004
  • Characteristics of a liquid-vapor interface where a nonequilibrium condensation flow exists are considered based on molecular dynamics simulations, The condensation coefficient, the velocity distributions of the reflected and evaporated molecules and the number flux of the evaporated molecules are compared with those under the liquid-vapor equilibrium. The comparison shows that the condensation coefficient under the nonequilibrium condensation is slightly larger and the number flux of the evaporated molecules is considerably smaller than those under the liquid-vapor equilibrium. The net condensation flux under the nonequilibrium condensation is underestimated if it is evaluated from the condensation coefficient and the number flux of the evaporated molecules under the liquid-vapor equilibrium. However the underestimation is relatively small.

  • PDF