Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329

Molecular Dynamics (MD) Study of Proton Exchange Membranes for Fuel Cells  

Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Hong, Young Taik (Center for Membranes, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Membrane Journal / v.26, no.5, 2016 , pp. 329-336 More about this Journal
Abstract
Proton exchange membrane (PEM) is one of the key components of membrane-electrode assembly (MEA), which plays important role in fuel cell performance together with catalysts. It is widely accepted that water channel morphology inside PEMs as a proton pathway significantly affects the PEM performance. Molecular dynamics (MD) simulations are a very useful tool to understand molecular and atomic structures of materials, so that many related researches are currently being studied. In this paper, we summarize the current research trend in MD simulations, present which properties can be characterized, and finally introduce the usefulness of MD simulations to the researchers for proton exchange membranes.
Keywords
fuel cell; proton exchange membranes; phase separation; water channel; molecular dynamics (MD);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341-349 (2014).   DOI
2 J. M. Lee, D. J. Kim, M. K. Jeong, M. G. Lee, C. H. Park, and S. Y. Nam, "Synthesis of highly selective polyimide material and comparison of gas permeability by molecular dynamics study", Membr. J., 25, 162-170 (2015).   DOI
3 J. M. Haile, "Molecular dynamics simulation", Wiley, New York (1992).
4 C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746-2757 (2014).   DOI
5 C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864-12877 (2012).   DOI
6 V. Marcon, D. W. Breiby, W. Pisula, J. Dahl, J. Kirkpatrick, S. Patwardhan, F. Grozema, and D. Andrienko, "Understanding structure-mobility relations for perylene tetracarboxydiimide derivatives", J. Am. Chem. Soc., 131, 11426-11432 (2009).   DOI
7 H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338-7364 (1998).   DOI
8 S. J. Paddison, "The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes", J. New Mater. Electrochem. Syst., 4, 197-207 (2001).
9 J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, $H_2,\, O_2, \,N_2, NO, \,CO, \,CO_2, \,NO_2,\, CS_2,\, and\, SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951-4957 (2000).   DOI
10 H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1-10 (2016).   DOI
11 S. J. Paddison and J. A. Elliott, "Molecular modeling of the short-side-chain perfluorosulfonic acid membrane", J. Phys. Chem. A, 109, 7583-7593 (2005).   DOI
12 A. Vishnyakov and A. V. Neimark, "Molecular simulation study of nafion membrane solvation in water and methanol", J. Phys. Chem. B, 104, 4471-4478 (2000).   DOI
13 A. Vishnyakov and A. V. Neimark, "Molecular dynamics simulation of nafion oligomer solvation in equimolar methanol-water mixture", J. Phys. Chem. B, 105, 7830-7834 (2001).   DOI
14 U. W. Schmitt and G. A. Voth, "Multistate empirical valence bond model for proton transport in water", J. Phys. Chem. B, 102, 5547-5551 (1998).   DOI
15 P. Y. Chen, C. P. Chiu, and C. W. Hong, "Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes", J. Power Sources, 194, 746-752 (2009).   DOI
16 J. Watson, "Bring climate change back from the future", Nature, 534, 437-437 (2016).   DOI
17 D. J. Kim, C. H. Park, and S. Y. Nam, "Molecular dynamics simulations of modified PEEK polymeric membrane for fuel cell application", Int. J. Hydrogen Energy, 41, 7641-7648 (2016).   DOI
18 P. V. Komarov, I. N. Veselov, P. P. Chu, P. G. Khalatur, and A. R. Khokhlov, "Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone)", Chem. Phys. Lett., 487, 291-296 (2010).   DOI
19 C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036-12045 (2010).   DOI
20 S. L. Lewis, "The paris agreement has solved a troubling problem", Nature, 532, 283 (2016).   DOI
21 P. J. Egan and M. Mullin, "Recent improvement and projected worsening of weather in the United States", Nature, 532, 357-360 (2016).   DOI
22 S. Y. Lee, H.-J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", Membr. J., 26, 1-13 (2016).   DOI
23 J. Larminie and A. Dicks, "Fuel cell systems explained", pp. 1-24, Wiley, West Sussex (2003).
24 B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345-352 (2001).   DOI
25 C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480-483 (2016).   DOI
26 C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443-1498 (2011).   DOI
27 Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly(arylene ether sulfone) s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026-4035 (2006).   DOI
28 J. C. Jansen, M. MacChione, E. Tocci, L. De Lorenzo, Y. P. Yampolskii, O. Sanfirova, V. P. Shantarovich, D. Hofmann, and E. Drioli, "Comparative study of different probing techniques for the analysis of the free volume distribution in amorphous glassy perfluoropolymers", Macromolecules, 42, 7589-7604 (2009).   DOI
29 N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, and M. Rikukawa, "Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction", Polymer, 50, 534-540 (2009).   DOI