Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.10.2931

Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula  

Lee, Song Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
This paper presents results for the calculation of transport properties of noble gases (He, Ne, Ar, Kr, and Xe) at 273.15 K and 1.00 atm using equilibrium molecular dynamics (EMD) simulations through a Lennard-Jones (LJ) intermolecular potential. We have utilized the revised Green-Kubo formulas for the stress (SAC) and the heat-flux auto-correlation (HFAC) functions to estimate the viscosities (${\eta}$) and thermal conductivities (${\lambda}$) of noble gases. The original Green-Kubo formula was employed for diffusion coefficients (D). The results for transport properties (D, ${\eta}$, and ${\lambda}$) of noble gases at 273.15 and 1.00 atm obtained from our EMD simulations are in a good agreement with the rigorous results of the kinetic theory and the experimental data. The radial distribution functions, mean square displacements, and velocity auto-correlation functions of noble gases are remarkably different from those of liquid argon at 94.4 K and 1.374 $g/cm^3$.
Keywords
Molecular dynamics simulation; Noble gases; Green-Kubo formula; Transport properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 2.
2 Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1957, 27, 1208.   DOI
3 Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1959, 31, 459.   DOI
4 Rahman, A. Phys. Rev. A 1964, 136, 405.
5 Verlet, L. Phys. Rev. 1967, 159, 98.   DOI
6 Verlet, L. Phys. Rev. 1968, 165, 201.   DOI
7 Nicolas, J. J.; Gubbins, K. E.; Streett, W. B.; Tildesley, D. J. Mol. Phys. 1979, 37, 1429.   DOI   ScienceOn
8 Harp, G. D.; Berne, B. J. J. Chem. Phys. 1968, 49, 1249.   DOI
9 Berne, B. J.; Harp, G. D. Adv. Chem. Phys. 1970, 17, 63.
10 Barker, J. A.; Watts, R. O. Chem. Phys. Lett. 1969, 3, 144.   DOI   ScienceOn
11 Rahman, A.; Stillinger, F. H. J. Chem. Phys. 1971, 55, 3336.   DOI
12 Lee, S. H.; Park, D. K.; Kang, D. B. Bull. Korean Chem. Soc. 2003, 24, 178.   DOI   ScienceOn
13 Lee, S. H. Bull. Korean Chem. Soc. 2007, 28, 1371.   DOI   ScienceOn
14 Hirschfelder, J. O.; Curtiss, C. F.; Birds, R. B. Molecular Theory of Gases and Liquids; John Wiley: NY, 1954; pp 1110 & 1212.
15 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64.
16 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 80.
17 Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Prentice-Hall: Englewood Cliffs, NJ, 1971.
18 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 81.
19 McQuarrie, D. A. Statistical Mechanics, 2nd ed; Happer & Row: NY, 1976; pp 364-365.
20 Atkins, P. W.; de Paula, J. Physical Chemistry; Vol. 1 Thermodynamics and Kinetics, 8th ed; Oxford Univ Press: Oxford, 2006; p 452.