• Title/Summary/Keyword: Molecular properties

Search Result 3,790, Processing Time 0.038 seconds

Screening of conjugated linoleic acid (CLA) producing Lactobacillus plantarum and production of CLA on soy-powder milk by these stains (공액리놀레산 생성 Lactobacillus plantarum 선발 및 이를 이용한 콩-분말 두유에서 공액리놀레산 생산)

  • Kim, Baolo;Lee, Byong Won;Hwang, Chung Eun;Lee, Yu-Young;Lee, Choonwo;Kim, Byung Joo;Park, Ji-Yong;Sim, Eun-Yeong;Haque, Md. Azizul;Lee, Dong Hoon;Lee, Jin Hwan;Ahn, Min Ju;Lee, Hee Yul;Ko, Jong Min;Kim, Hyun Tae;Cho, Kye Man
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • In this study, a total of 16 conjugated linoleic acid (CLA) producing lactic acid bacteria (LAB) were isolated from fermented foods. Among those strains, the S48 and P1201 strains were capable of producing higher CLA contents than other LABs. The two strains were classified as Lactobacillus plantarum based on morphological, physiological, chemotaxonomic, and molecular-genetic properties. The survival rates of these strain appeared to be 59.57% and 62.22% under artificial gastric conditions after 4 h at pH 2.5, respectively. These strains produced the cis-9, trans-11, and trans-10, cis-12 CLA isomers from 8% skim milk medium supplemented with the different free LA concentration at $37^{\circ}C$ for 48 h and the production of two CLA isomers constantly increased in the growth until 48 h of incubation. After 48 h of fermentation, the levels of CLA appeared highest in steamed soy-powder milk than fresh and roasted soy-powder milks. In particular, the CLA contents were produced $183.57{\mu}g/ml$ and $198.72{\mu}g/ml$ from steamed soy-powder milk after fermentation (48 h) with S48 and P1201 strains, respectively.

Effect of ω3-Fatty Acid Desaturase Gene Expression on Invasion and Tumorigenicity in Human Tongue Squamous Cell Carcinoma Cells (인체 혀의 편평세포암 세포에서 ω3-fatty acid desaturase 유전자 발현이 침윤 및 종양형성에 미치는 영향)

  • Hong, Tae-Hwa;Shin, Soyeon;Han, Seung-Hyeon;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.945-954
    • /
    • 2018
  • Omega-3 polyunsaturated fatty acids (${\omega}3$-fatty acid) have been found to possess anticancer properties in a variety of cancer cell lines and animal models, but their effects in human tongue squamous cell carcinomas (SCCs) remain unclear. This study was designed to examine the effect of ${\omega}3$-fatty acid desaturase (fat-1) gene expression on invasion and tumorigenicity in human tongue SCC cells and the molecular mechanism of its action. Docosahexaenoic acid (DHA) treatment inhibited in vitro invasion in a dose-dependent manner. In zymography, matrix metalloproteinase-9 (MMP-9) and Matrix metallopeptidase-2 (MMP-2) activities were reduced, and MMP-9 and MMP-2 promoter activities were inhibited by the DHA treatment. In addition, cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) promoter reporter activities were inhibited in SCC-4 and SCC-9 cells after the DHA treatment. To investigate the effect of a high level of endogenous ${\omega}3$ fatty acids, a stable SCC-9 cell line expressing the ${\omega}3$-desaturase gene (fSCC-9sc) was generated. The growth rate and colony-forming capacity of fSCC-9sc were remarkably decreased as compared with those of fSCC-9cc. Likewise, the tumor size and volume of fSCC-9sc implanted into nude mice were significantly inhibited, with increases in the cell death index. Furthermore, a transwell chamber invasion assay showed a reduction in cell invasion of the fSCC-9sc lines when compared with that of the fSCC-9cc line. These findings suggested that fat-1 gene expression inhibited tumorigenicity, as well as invasion in human tongue SCC cells. Thus, utilization of ${\omega}3$ fatty acids may represent a promising therapeutic approach for chemoprevention and the treatment of human tongue SCCs.

Characterization of Lactate Dehydrogenase in Acanthogobius hasta (풀망둑(Acanthogobius hasta) 젖산탈수소효소의 특성)

  • Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.264-272
    • /
    • 2008
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes in tissues from Acanthogobius hasta were characterized by biochemical, immunochemical and kinetic methods. The activities of LDH in skeletal muscle and eye tissues were 65.30 and 53.25 units, but LDH activities in heart and liver tissues were very low. LDH/CS (EC 4.1.3.7, citrate synthase) in skeletal muscle was the highest as 22.29. Specific activities of LDH in brain, eye and skeletal muscle were 56.45, 38.04 and 11.0 units/mg, respectively. The LDH isozymes in tissues were separated by polyacrylamide gel electrophoresis after immunoprecipitation with antiserum against $A_4,\;B_4$ eye-specific $C_4$ and liver-specific $C_4$. LDH $AC_4$ isozymes were detected predominantly in skeletal muscle, brain and eye tissues, and $B_4$ isozyme was detected in heart. Anodal eye-specific $C_4$ and cathodal liver-specific $C_4$ were coexpressed in A. hasta. The eye-specific $C_4$ isozyme showed higher activity in eye tissue, but liver-specific $C_4$ isozyme showed lower activity in liver. As a result, one part of molecular structures in $A_4\;and\;C_4,\;A_4\;and\;B_4$, and eye-specific $C_4$ and liver-specific $C_4$ were similar, but in $B_4\;and\;C_4$ were different with each other. Therefore the subunit A may be conservative in evolution, and the evolution of subunit B seems to be faster than that of subunit A. The LDH $A_4$ isozyme of skeletal muscle was purified in the fraction from elution with NAD+ containing buffer of affinity chromatography and eye-specific $C_4$ isozyme was eluted right after $A_4$, so the structure of eye-specific $C_4$ isozyme is similar to $A_4$. And LDH activity remained 35.22-43.47% as a result of the inhibition by pyruvate, the Michaelis-Menten constant values for pyruvate was 0.080-0.098 mM, and Vmax were 153.85 units, 35.09 units in skeletal muscle and eye, respectively. Also the $B_4$ isozyme was the thermo-stablest and $C_4$ was stabler than $A_4$ isozyme. The optimum pH of LDH was 6.5. The results mentioned above indicate that isozymes in tissues showed the properties between LDH $A_4\;and\;B_4$ isozyme as A. hasta was adapted to hypoxic conditions. Also LDH seems to function more effectively under anaerobic condition because LDH in skeletal muscle and eye tissues have high affinity for pyruvate.

Physico-chemical Properties and Utilization of Sarcoplasmic Proteins for the Determination of End-point Cooking Temperatures of Ground Pork Hams Containing Salt and Fat (식염 및 지방을 함유한 분쇄돈육의 이화학적 성상 및 최종가열온도 측정을 위한 근장단백질의 이용)

  • Kang, S.M.;Chin, K.B.;Cho, S.H.;Lee, J.M.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Processed meals, such as a ground meat and hamburger patty, are required to ensure that no pathogens remain in the final products. However, there was no rapid method available to verify that the recommended end-point cooking temperature(EPT) was reached. Thus, the objective of this study was to rapidly determine EPT of ground pork hams using sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SOS-PAGE), based on the disappearance of sarcoplasmic proteins after cooking. Fresh pork hams were added two levels of salt(0, 2%) and fat(15, 25%) combinations, and stored in refrigerator overnight, and cooked to internal cooking temperatures of $64^{\circ}C$ to $74^{\circ}C$ with $2^{\circ}C$ increments. Cooked pork hams were measured cooking loss(CL, %), protein solubility(PS) and SOS-PAGE. CL(%) was reduced with the addition of 2% salt, as compared to the control, regardless of fat contents. It was also increased with increasing eooking temperature. Protein solubility was affected by the cooking temperature, resulting in reduced PS up to $64^{\circ}C$(P < 0.05), but remained constant higher than $68^{\circ}C$. In SOS-PAGE analysis, protein bands with the molecular weights of 36 and 66 kDa were affected by the addition of salt and fat combinations. regardless of treatments. These protein fractions were decreased gradually with increased cooking temperatures up to $68^{\circ}C$ ${\sim}$ $70^{\circ}C$ and might be good indicators for the determination of EPT in ground pork hams.

DISEASE DIAGNOSED AND DESCRIBED BY NIRS

  • Tsenkova, Roumiana N.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1031-1031
    • /
    • 2001
  • The mammary gland is made up of remarkably sensitive tissue, which has the capability of producing a large volume of secretion, milk, under normal or healthy conditions. When bacteria enter the gland and establish an infection (mastitis), inflammation is initiated accompanied by an influx of white cells from the blood stream, by altered secretory function, and changes in the volume and composition of secretion. Cell numbers in milk are closely associated with inflammation and udder health. These somatic cell counts (SCC) are accepted as the international standard measurement of milk quality in dairy and for mastitis diagnosis. NIR Spectra of unhomogenized composite milk samples from 14 cows (healthy and mastitic), 7days after parturition and during the next 30 days of lactation were measured. Different multivariate analysis techniques were used to diagnose the disease at very early stage and determine how the spectral properties of milk vary with its composition and animal health. PLS model for prediction of somatic cell count (SCC) based on NIR milk spectra was made. The best accuracy of determination for the 1100-2500nm range was found using smoothed absorbance data and 10 PLS factors. The standard error of prediction for independent validation set of samples was 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. It has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. From the spectral changes, we learned that when mastitis occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk. It was consistent with the results we obtained further when applied 2DCOS. Two-dimensional correlation analysis of NIR milk spectra was done to assess the changes in milk composition, which occur when somatic cell count (SCC) levels vary. The synchronous correlation map revealed that when SCC increases, protein levels increase while water and lactose levels decrease. Results from the analysis of the asynchronous plot indicated that changes in water and fat absorptions occur before other milk components. In addition, the technique was used to assess the changes in milk during a period when SCC levels do not vary appreciably. Results indicated that milk components are in equilibrium and no appreciable change in a given component was seen with respect to another. This was found in both healthy and mastitic animals. However, milk components were found to vary with SCC content regardless of the range considered. This important finding demonstrates that 2-D correlation analysis may be used to track even subtle changes in milk composition in individual cows. To find out the right threshold for SCC when used for mastitis diagnosis at cow level, classification of milk samples was performed using soft independent modeling of class analogy (SIMCA) and different spectral data pretreatment. Two levels of SCC - 200 000 cells/$m\ell$ and 300 000 cells/$m\ell$, respectively, were set up and compared as thresholds to discriminate between healthy and mastitic cows. The best detection accuracy was found with 200 000 cells/$m\ell$ as threshold for mastitis and smoothed absorbance data: - 98% of the milk samples in the calibration set and 87% of the samples in the independent test set were correctly classified. When the spectral information was studied it was found that the successful mastitis diagnosis was based on reviling the spectral changes related to the corresponding changes in milk composition. NIRS combined with different ways of spectral data ruining can provide faster and nondestructive alternative to current methods for mastitis diagnosis and a new inside into disease understanding at molecular level.

  • PDF

Characteristic of Aromatic Amino Acid Substitution at α96 of Hemoglobin

  • Choi, Jong-Whan;Lee, Jong-Hyuk;Lee, Kwang-Ho;Lee, Hyean-Woo;Sohn, Joon-Hyung;Yoon, Joon-Ho;Yeh, Byung-Il;Park, Seung-Kyu;Lee, Kyu-Jae;Kim, Hyun-Won
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • Replacement of valine by tryptophan or tyrosine at position $\alpha$96 of the $\alpha$ chain ($\alpha$96Val), located in the ${\alpha}_1{\beta}_2$ subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the $\alpha$96 position. The characteristic of aromatic amino acid substitution at the $\alpha$96 of hemoglobin has been further investigated by producing double mutant r Hb ($\alpha$42Tyr$\rightarrow$ Phe, $\alpha$96Val$\rightarrow$Trp). r Hb ($\alpha$42Tyr$\rightarrow$Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between $\alpha$42Tyr and $\beta$99Asp in the ${\alpha}_1{\beta}_2$ subunit interface of deoxy Hb A. The second mutation, $\alpha$96Val$\rightarrow$Trp, may compensate the functional defects of r Hb ($\alpha$42Tyr$\rightarrow$Phe), if the stability due to the introduction of trypophan at the $\alpha$96 position is strong enough to overcome the defect of r Hb ($\alpha$42Tyr$\rightarrow$Phe). Double mutant r Hb ($\alpha$42Tyr$\rightarrow$Phe, $\alpha$96Val$\rightarrow$Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb ($\alpha$42Tyr$\rightarrow$Phe). $^1$H NMR spectroscopic data of r Hb ($\alpha$42Tyr$\rightarrow$Phe, $\alpha$96Val$\rightarrow$Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between $\alpha$42Tyr and $\beta$99Asp is essential for the novel oxygen binding properties of deoxy Hb ($\alpha$96Val$\rightarrow$Trp).

Anti-inflammatory properties of chloroform extracts from GW10-45, a new cultivar derived from Pleurotus ferulae, in RAW264.7 murine macrophages. (아위느타리 신품종 GW10-45 클로로포름 추출물의 항염증 효과)

  • Choi, Hyung-Wook;Kim, Eun-Joo;Kim, Keun-Ki;Shin, Pyung-Gyun;Kim, Gun-Do
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.220-224
    • /
    • 2016
  • Chronic inflammation, which results from continuous exposure to antigens, is one of major reasons for tissue damage and diseases such as rheumatoid arthritis and type 2 diabetes. In this study, we investigated the anti-inflammatory effects of extracts (hexane, $CHCl_3$, MeOH, $MeOH/H_2O$, and $H_2O$) from GW10-45, which is our new cultivar of an edible mushroom Pleurotus ferulae (ASI 2803 and ASI 2778), in RAW264.7 murine macrophages. None of the extracts showed cytotoxicity in RAW264.7 cells and the hexane, CHCl and H extracts reduced nitric oxide (NO) production, an important inflammatory marker, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Particularly, the extract (CG45) inhibited NO production more than the other extracts did. To elucidate the effects of CG45 on molecular targets involved in pro-inflammatory responses, we performed western blot analysis. Expression of inducible nitric oxide (iNOS) significantly decreased in LPS and CG45 co-incubated cells compared to that in LPS only-treated cells. Additionally, another protein thatplays a critical role in inflammation, was down-regulated in cells treated with both LPS and CG45. In the nuclear factor $(NF)-{\kappa}B$ pathway, phosphorylation of $I{\kappa}B{\alpha}$ decreased in RAW264.7 cells treated with both LPS and CG45. Furthermore, CG45 inhibited the phosphorylation of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 cells. Conclusively, CG45 could suppress pro-inflammatory responses in LPS-stimulated RAW264.7 cells by down-regulating not only the phosphorylation of $NF-{\kappa}B$ and $I{\kappa}B{\alpha}$ but also the expression of iNOS and COX-2 without any cytotoxicity.

Review of the study on the surfactant-induced foliar uptake of pesticide (계면활성제에 의해 유도되는 농약의 엽면 침투성 연구 현황)

  • Yu, Ju-Hyun;Cho, Kwang-Yun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2002
  • Research trends in the measurement of foliar uptake of pesticides and the recently proposed action mechanism of the surfactant-induced uptake of pesticides were reviewed with the related reports and studies. Major techniques used in those fields are bioassay, radiotracer techniques with leaves or cuticular membrane. Recently, a new method using Congo Red as a tracer was proposed. The limiting factor in the pesticides uptake into leaves is the waxy layer which consists of the epicuticular and cuticular wax. Physico-chemical parameters such as molar volume, water solubility and partition coefficient of pesticides have limited influences on the pesticide uptake into leaves. Polydisperse ethoxylated fatty alcohol surfactants are well known as the good activator for many pesticides. It is now generally agreed that uptake activation is not related to the intrinsic surface active properties of surfactants such as surface activity, solvent property, humectancy and critical micelle concentration. Recent studies using ESR-spectroscopy revealed that the surfactants have an unspecific plasticising effect on the molecular structure of the wax and cuticular matrix, leading to increased mobilities of pesticides. Penetration of surfactants into waxy layer altered the pesticide mobility in wax and the partition coefficient of pesticide, and then the pesticides penetration into leaves was enhanced temporally. The enhancing effect of surfactant could be significantly different depending on the carbon number of aliphatic moiety and the number of ethoxy group in polyoxyethylene chain of surfactants. It is suggested that the rate of penetration of surfactants should have a significant relationship with the rate of penetration of pesticides.

Inhibitory Substance on the Snake Venoms Produced by Penicillium sp. (사독의 조해물질에 관한 연구)

  • Seu, Jung-Hwn;Yi, Dong-Heui
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.2
    • /
    • pp.75-89
    • /
    • 1979
  • One strain of Penicillium sp. (175-66-B), isolated from soil, was able to produce a substance that has a strong inibition activity against the Agkistrodon and Trimeresurus venoms. In this experiment, the chemical and biological properties of the sample were investigated. As an inhibitory substance, it was effective to the proteinase, hemorrhagic and lethal factors of Agkistrodon and Trimeresurus venoms, and also effective to several fractions of the proteinases and hemorrhagic factors of Agkistrodon halys blomhoffi venom. Moreover, in the addition of prednisotone, it was more effective for the cure of the mouse envenomated with the venom amount of two fold of MLD$_{100}$. This substance was very stable to the acid, alkali and heat. Its melting point was high enough to sublime at 222$^{\circ}C$ without any decomposition. This sample was easily dissolved only in hot water, but not in several organic solvents except for a little dissolution in elate. It did not have the chelating activity. It had very strong specificity to the snake venoms. but its activity was depressed by the addition of zinc or cupric salts. This sample had no acute toxicity to the mouse. Its chemical formula was $C_{16}$ $H_{12}$$N_2$ $O_{10}$ with the molecular weight of about 392. It has two epoxy groups and four carboxyl radicals, but amino, nitrite and nitrate radicals, unsaturated bonds and aromatic ring were not detected. Theuchemical configuration of this sample was suggested to be;

  • PDF

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.