• 제목/요약/키워드: Molecular orbital

검색결과 308건 처리시간 0.023초

Trigonal Bipyramid 구조를 갖는 착물의 쌍극자모멘트의 계산 (Calculation of the Dipole Moments for Trigonal Bipyramidal Complexes)

  • 안상운;김자홍;이기학;신갑철
    • 대한화학회지
    • /
    • 제26권1호
    • /
    • pp.18-23
    • /
    • 1982
  • Trigonal bipyramid 구조를 갖는 착물의 쌍극자모멘트를 계산하는 새로운 방법을 발전시켰다. 근사분자궤도 함수법 및 원자가 결합법을 사용하여 몇개의 trigonal bipyramid 구조를 갖는 착물의 쌍극자모멘트를 계산하였으며 근사분자궤도 함수로 계산한 값이 실험치에 보다 가까운 값을 주었다. 이 쌍극자모멘트 계산방법을 trigonal bipyramid 구조를 갖는 착물의 기하학적인 구조를 예측하는 데 도움이 된다.

  • PDF

Soft X-ray Spectroscopy of ClAlPc/Pentacene/ITO Interfaces: Role of ClAlPc on Energetic Band Alignment

  • 김민수;허나리;이상호;조상완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.190.1-190.1
    • /
    • 2014
  • The interfacial electronic structure of a bilayer of chloroaluminum phthalocyanine (ClAlPc) and pentacene grown on indium tin oxide (ITO) has been studied using synchrotron radiation-excited photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the pentacene layer and the lowest unoccupied molecular orbital (LUMO) level of the ClAlPc layer (EDHOMO - EALUMO) was determined and compared with that of C60/pentacene bilayers. The EDHOMO - EALUMO of a heterojunction with ClAlPc was found to be 1.4 eV, while that with C60 was 1.0 eV. This difference is discussed in terms of the difference of the ionization energy of each acceptor materials. We also obtained the complete energy level diagrams of ClAlPc/pentacene/ITO and C60/pentacene/ITO, respectively.

  • PDF

경쟁 1,2-와 1,4-고리화 첨가반응의 상관도 (HMO Correlation Diagrams for a few Competing 1,2-and 1,4-Cycloaddition Reactions)

  • 박병각
    • 대한화학회지
    • /
    • 제21권3호
    • /
    • pp.155-160
    • /
    • 1977
  • 경쟁 1,2-와 1,4-고리화첨가반응에 대한 frontier 분자궤도와 전전자에너지의 상관도를 작도하고 이 상관도에 의해서 반응기구를 설명할 수 있었다. 고찰해서 유도된 중요 결론은 다음과 같다. 1) HO와 LU사이에 교차가 일어나지 않았다. 그러므로 반응은 열반응이다. 2) diradical을 경유하는 이단계기구가 일단계기구 보다 에너지장벽으로 미루어 보아 유리하다. 3) [2+2]와 [2+4] 고리화첨가물의 생성물분포를 예측할 수 있다.

  • PDF

Further Applications of Molecular Orbital Calculations for Solid HF According to Pseudolattic Method

  • Kim, Jin-Seog;No, Kyoung-Tai;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권2호
    • /
    • pp.61-64
    • /
    • 1984
  • The molecular orbital calculations for solid HF are performed by using the pseudolattice method considering the coulomb lattice sum. In order to obtain the reliable net atomic charges and lattice energy of one dimensional chains, the limited counting of interactions terms up to second neighbours for zig-zag chain and third neighbours for linear chain are sufficient in this calculation. In three dimensional solid HF, the contribution of interaction energy between non-hydrogen bonded neighbours to lattice energy is about 3.5% and the lattice energy of nonpolar structure is stablized by 2.05 kcal/mole compared with that of polar structure. And, this method is further tested and compared with the other methods.

Ganglioside GT1b increases hyaluronic acid synthase 2 via PI3K activation with TLR2 dependence in orbital fibroblasts from thyroid eye disease patients

  • Yoo, Hyun Kyu;Park, Hyunju;Hwang, Hye Suk;Kim, Hee Ja;Choi, Youn-Hee;Kook, Koung Hoon
    • BMB Reports
    • /
    • 제54권2호
    • /
    • pp.136-141
    • /
    • 2021
  • Thyroid eye disease (TED) is a complex autoimmune disease with a spectrum of signs. we previously reported that trisialoganglioside (GT)1b is significantly overexpressed in the orbital tissue of TED patients, and that exogenous GT1b strongly induced HA synthesis in orbital fibroblasts. However, the signaling pathway in GT1b-induced hyaluronic acid synthase (HAS) expression in orbital fibroblasts from TED patients have rarely been investigated. Here, we demonstrated that GT1b induced phosphorylation of Akt/mTOR in a dose-dependent manner in orbital fibroblasts from TED patients. Both co-treatment with a specific inhibitor for PI3K and siRNA knockdown of TLR2 attenuated GT1b-induced Akt phosphorylation. GT1b significantly induced HAS2 expression at both the transcriptional and translational level, which was suppressed by specific inhibitors of PI3K or Akt/mTOR, and by siRNA knockdown of TLR2. In conclusion, GT1b induced HAS2 in orbital fibroblasts from TED patients via activation of the PI3K-related signaling pathway, dependent on TLR2.

The Adsorptions and Configurations of CO Molecules on W (110) and W (100) Surface: Molecular Orbital Theory

  • Choe, Sang-Joon;Kang, Hae-Jin;Park, Dong-Ho;Huh, Do-Sung;Lee, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권9호
    • /
    • pp.1314-1320
    • /
    • 2004
  • The adsorption and configuration of CO molecules adsorbed on W (110) and W (100) surfaces have been calculated by the atomic superposition and electron delocalization molecular orbital (ASED-MO) method. Referred to as the ASED-MO method, it has been used in the present study to calculate the geometries, binding energies, vibrational frequencies, orbital energies, reduced overlap population (ROP), and charges. From these results adsorption properties of ${\alpha}$-state and ${\beta}$-state were deduced. The calculated binding energies are in good agreement with the experimental result. On the W (110), the calculated average binding energies are 2.56 eV for the end-on configuration and 3.20 eV for the lying-down configuration. Calculated vibrational frequency is 1927 $cm^{-1}$ at a 1-fold site and 1161 $cm^{-1}$ at a long-bridge (2) site. These results are in reasonable agreement with experimental values. On the W(100) surface, calculated average binding energies of the end-on and the lying-down are 2.54 eV and 4.02 eV respectively. The differences for binding energy and configuration on the surfaces are explained on the basis of surface-atom coordination and atom-atom spacing. In the favored lyingdown CO configuration on the W(110) and W(100) surfaces, 4 ${\sigma}$ and 1 ${\pi}$ donation interactions, coupled with the familiar 5 ${\sigma}$ donation to the surfaces and back-donations to the CO 2 ${\pi}^{\ast}$ orbital, are responsible for adsorption to the surface.

Modified Analytic Solutions of F.C.C. Metal Clusters

  • Juhyeok Lee;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권5호
    • /
    • pp.578-583
    • /
    • 1993
  • By including the overlap integrals between atomic orbitals, the modified cluster orbitals for a metal cluster of face centered cubic lattice are found. The modified analytic solutions of the cluster are obtained from them with the assumption that the cluster orbitals with different state indices do not mix together. The physical properties-the HOMO levels and the unit electronic energies-of Ni, Pd, and Pt clusters of various size, calculated by the modified cluster orbital method, agree better with the results obtained by the Extended Huckel calculation than those of the previous(unmodified) cluster orbital method do. As a result, it is verified that the physical properties, at least those related to the energy levels, obtained by the Extended Huckel method may be reproduced by use of the modified cluster orbital method instead.

A Molecular Orbital Study of the Electronic Structure and the Ring Inversion Process in$Cp_2TiS_3$ Complex

  • Sung Kwon Kang;Byeong Gak Ahn
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권8호
    • /
    • pp.658-662
    • /
    • 1994
  • Ab initio and extended Huckel calculations have been applied to discuss the electronic structure, ring inversion barrier, and geometry of the $Cp_2TiS_3$ compound. The deformation of four membered ring in the planar geometry is originated from a second-order Jahn-Teller distortion due to the small energy gap between HOMO and LUMO on the basis of extended Huckel calculations. The puckered $C_s$ geometry is stabilized by the interaction of the $x^2-y^2$ metal orbital with the hybrid orbital in sulfur. Ab initio calculations have been carried out to explore the ring inversion process for the model $Cl_2TiS_3$ compound. We have optimized $C_s$ and $C_{2v}$ structures of the model compound at the RHF level. The energy barriers for the ring inversion are sensitive to the used basis set. With 4-31$G^*$ for the Cl and S ligands, the barriers are computed to be 8.41 kcal/mol at MP2 and 8.02 kcal/mol at MP4 level.

Structural Analysis of Species in NbCI5-EMIC Room-Temperature Molten Salt with Raman Spectroscopic Measurement and Ab Initio Molecular Orbital Calculation

  • Koura, Nobuyuki;Matsuzawa, Hidenori;Kato, Tomoki;Idemoto, Yasushi;Matsumoto, Futoshi
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.183-188
    • /
    • 2002
  • The structure of species formed in $NbCI_5-I-ethyl-3-methylimidazolium$ chloride (EMIC) room-temperature molten salt (RTMS) was examined with the Raman spectroscopic measurement and ab initio molecular orbital calculation. The equilibrium structures of $NbCl_5,\;NbCl_6^-,\;Nb_2CI_{10},\;Nb_2CI_{11}^-,\;Nb_3CI_6^-,\;NbCI_6^--EMI^+\;(in\;which\;NbCI_6^-$ anion approaches $EMI^+$ cation with strong interaction) and $Nb_2CI_{11}^--EMI^+$ were obtained with the HF/LANL2DZ level of calculation. The harmonic frequencies at each equilibrium structure were compared with Raman spectra. The harmonic frequencies of $NbCI_6^--EMI^+,\; Nb_2CI_{11}^--EMI^+,\;and\;Nb_2CI_{10}$ were in good agreement with the Raman spectra of RTMS melts. In the $NbCI_5-EMIC RTMS$, the main species were $NbCI_6^-\;and\;EMI^+$. In the $NbCl_5-EMIC$ RTMS added $NbCl_5\;over\;50mol\%$, small amount of $Nb_2CI_{11}^-\;and\; Nb_2CI_{10}$ were also formed. The structures of anions and cation in the RTMS distorted from free ions with Coulomb force.

The Analytic Gradient with a Reduced Molecular Orbital Space for the Equation-of-Motion Coupled-Cluster Theory: Systematic Study of the Magnitudes and Trends in Simple Molecules

  • 백경기;전상일
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권7호
    • /
    • pp.720-726
    • /
    • 2000
  • The analytic gradient method for the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) energy has been extended to employ a reduced molecular orbital (MO) space. Not only the innermost core MOs but also some of the outermost virtua l MOs can be dropped in the reduced MO space, and a substantial amount of computation time can be reduced without deteriorating the results. In order to study the magnitudes and trends of the effects of the dropped MOs, the geometries and vibrational properties of the ground and excited states of BF, CO, CN, N2, AlCl, SiS, P2, BCl, AIF, CS, SiO, PN and GeSe are calculated with different sizes of molecular orbital space. The 6-31 G* and the aug-cc-pVTZ basis sets are employed for all molecules except GeSc for which the 6-311 G* and the TZV+f basis sets are used. It is shown that the magnitudes of the drop-MO effects are about $0.005\AA$ in bond lengths and about 1% on harmonic frequencies and IR intensities provided that the dropped MOs correspond to (1s), (1s,2s,2p), an (1s,2s,2p,3s,3p) atomic orbitals of the first, the second, and the third row atoms, respectively. The geometries and vibrational properties of the first and the second excited states of HCN and HNC are calculated by using a drastically reduced virtual MO space as well as with the well defined frozen core MO space. The results suggest the possibility of using a very smalI MO space for qualitative study of valence excited states.