DOI QR코드

DOI QR Code

The Adsorptions and Configurations of CO Molecules on W (110) and W (100) Surface: Molecular Orbital Theory

  • Choe, Sang-Joon (Department of Advanced Material Chemistry, Institute of Basic Science, Inje University) ;
  • Kang, Hae-Jin (Department of Advanced Material Chemistry, Institute of Basic Science, Inje University) ;
  • Park, Dong-Ho (Department of Advanced Material Chemistry, Institute of Basic Science, Inje University) ;
  • Huh, Do-Sung (Department of Advanced Material Chemistry, Institute of Basic Science, Inje University) ;
  • Lee, Soon-Bo (Department of Chemistry, Science Campus, Sungkyunkwan University)
  • Published : 2004.09.20

Abstract

The adsorption and configuration of CO molecules adsorbed on W (110) and W (100) surfaces have been calculated by the atomic superposition and electron delocalization molecular orbital (ASED-MO) method. Referred to as the ASED-MO method, it has been used in the present study to calculate the geometries, binding energies, vibrational frequencies, orbital energies, reduced overlap population (ROP), and charges. From these results adsorption properties of ${\alpha}$-state and ${\beta}$-state were deduced. The calculated binding energies are in good agreement with the experimental result. On the W (110), the calculated average binding energies are 2.56 eV for the end-on configuration and 3.20 eV for the lying-down configuration. Calculated vibrational frequency is 1927 $cm^{-1}$ at a 1-fold site and 1161 $cm^{-1}$ at a long-bridge (2) site. These results are in reasonable agreement with experimental values. On the W(100) surface, calculated average binding energies of the end-on and the lying-down are 2.54 eV and 4.02 eV respectively. The differences for binding energy and configuration on the surfaces are explained on the basis of surface-atom coordination and atom-atom spacing. In the favored lyingdown CO configuration on the W(110) and W(100) surfaces, 4 ${\sigma}$ and 1 ${\pi}$ donation interactions, coupled with the familiar 5 ${\sigma}$ donation to the surfaces and back-donations to the CO 2 ${\pi}^{\ast}$ orbital, are responsible for adsorption to the surface.

Keywords

References

  1. Campuzano, J. C. The Adsorption of Carbon Monoxide by TransitionMetals; The Chemical Physics of Solid Surfaces and HeterogeneousCatalyses; King, D. A.; Woodruff, D. P., Eds.; Elsevier: Amsterdum,1990; Vol. 3, Part A3.
  2. Yates, Jr, J. T. Surf. Sci. 1994, 299/300, 731.
  3. Schoder, U.; Guyot-Sionnest, P. Surf. Sci. 1999, 421, 53. https://doi.org/10.1016/S0039-6028(98)00813-9
  4. Shimizu, T.; Ohi, A.; Tokumoto, H. Surf. Sci. 1999, 429, 143. https://doi.org/10.1016/S0039-6028(99)00358-1
  5. Maciejewski, P.; Wurth, W.; Kostlmeier, S.; Pacchioni, G.; Rosch,N. Surf. Sci. 1995, 330, 156. https://doi.org/10.1016/0039-6028(95)00398-3
  6. Houston, J. E. Surf. Sci. 1991, 255, 303. https://doi.org/10.1016/0039-6028(91)90687-N
  7. Colaiami, M. L.; Chen, J. G.; Weinberg, W. H.; Yates, Jr, J. T. J.Am. Chem. Soc. 1992, 114, 3735. https://doi.org/10.1021/ja00036a024
  8. Lee, S. Y.; Kim, Y. D.; Yang, T. S.; Boo, J. H.; Park, S. C.; Lee, S.B. J. Vac. Sci. Techol. 2000, 18, 1455. https://doi.org/10.1116/1.582369
  9. Lee, S. Y.; Kim, Y. D.; Seo, S. N.; Park, C. Y.; Kwak, H. T.; Boo, J.H.; Lee, S. B. Bull. Korean Chem. Soc. 1999, 20, 1061.
  10. Propst, F. M.; Piper, T. C. J. Vac. Sci. Techol. 1967, 4, 53. https://doi.org/10.1116/1.1492522
  11. Madey, T. E.; Yates, Jr, J. T.; Stern, R. C. J. Chem. Phys. 1965, 42,1372. https://doi.org/10.1063/1.1696123
  12. King, D. A.; Goymour, G. G.; Yates, Jr, J. T. Proc. R. Soc. LondonSer. 1972, A331, 361.
  13. Colainanni, M. L.; Chen, J. G.; Weinberg, W. H.; Yates, Jr, J. T. J.Am. Chem. Soc. 1992, 114, 3735. https://doi.org/10.1021/ja00036a024
  14. Choe, S. J.; Kang, H. K.; Park, D. H.; Huh, D. S.; Park, J. K. App.Surf. Sci. 2001, 181, 265. https://doi.org/10.1016/S0169-4332(01)00398-1
  15. Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 2000,21, 779.
  16. Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 1998,19, 733.
  17. Choe, S. J.; Park, D. H.; Huh, D. S. Bull. Korean Chem. Soc. 1994,11, 933.
  18. Ryu, G. H.; Park, S. C.; Lee, S. B. Surf. Sci. 1999, 427-428, 419.
  19. Ray, N. K.; Anderson, A. B. Surf. Sci. 1982, 119, 35. https://doi.org/10.1016/0039-6028(82)90185-6
  20. Anderson, A. B. J. Phys. Chem. 1975, 65, 1187.
  21. Anderson,A. B.; Grimes, R. W.; Hong, S. Y. J. Phys. Chem. 1987, 91,4245. https://doi.org/10.1021/j100300a009
  22. Anderson, A. B.; Jen, S. F. J. Phys. Chem. 1990, 94,1607. https://doi.org/10.1021/j100367a071
  23. Mehandru, S. P.; Anderson, A. B. Surf. Sci. 1988, 201, 345. https://doi.org/10.1016/0039-6028(88)90617-6
  24. Award, M. K.; Anderson, A. B. J. Am. Chem. Soc. 1990, 112, 1603. https://doi.org/10.1021/ja00160a046
  25. Toyoshima; Sormorjai, G. A. Catal. Rev. Sci. Eng. 1979, 19, 105. https://doi.org/10.1080/03602457908065102
  26. Gupta, S. K.; Nappi, B. M.;. Gingerich, K. A. Inorg. Chem. 1981,20, 966. https://doi.org/10.1021/ic50218a004
  27. Pollitzer, P.; Kasten, S. D. J. Phys. Chem. 1976, 80, 385. https://doi.org/10.1021/j100545a010
  28. Kusuma, T. S.; Companion, A. L. Surf. Sci. 1988, 195, 59. https://doi.org/10.1016/0039-6028(88)90780-7
  29. Ryu, G. H.; Park, S. C.; Lee, S. B. Surf. Sci. 1999, 427, 419. https://doi.org/10.1016/S0039-6028(99)00314-3

Cited by

  1. Molecules on W(111) Surface: A Computational Study vol.112, pp.32, 2008, https://doi.org/10.1021/jp8002992
  2. CO Oxidation Mechanism on Tungsten Nanoparticle vol.116, pp.35, 2012, https://doi.org/10.1021/jp305059x
  3. Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study vol.26, pp.11, 2004, https://doi.org/10.5012/bkcs.2005.26.11.1682
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Adsorption and Desorption of CO on W(110) Surfaces vol.29, pp.6, 2008, https://doi.org/10.5012/bkcs.2008.29.6.1115
  6. CO Adsorption on Mo(110) Studied Using Thermal Desorption Spectroscopy (TDS) and Ultraviolet Photoelectron Spectroscopy (UPS) vol.30, pp.6, 2004, https://doi.org/10.5012/bkcs.2009.30.6.1353
  7. Adsorption behaviors of CO on W(110) and Mo(110) surfaces in the β-state are still not clear vol.603, pp.10, 2004, https://doi.org/10.1016/j.susc.2008.09.053
  8. Co-adsorption of CO and oxygen on W(110) surfaces vol.85, pp.1, 2004, https://doi.org/10.1016/j.vacuum.2010.04.003