• Title/Summary/Keyword: Molecular modeling

Search Result 415, Processing Time 0.025 seconds

Separation and Purification of Chiral Compounds Using Crosslinked Sodium Alginate Membranes (가교화된 알진산나트륨막을 이용한 키랄 화합물 분리 정제)

  • 김지혜;김상균;이규호;제갈종건
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.352-359
    • /
    • 2004
  • Membrane technology was used for the optical resolution of the various racemic compounds such as tryptophan, tyrosine and phenylalanine, using enantioselective membranes prepared from sodium alginate (SA) and glutaraldehyde as a membrane material and crosslinking agent, respectively, The chemical structure of the membranes was characterized with FT-IR spectrophotometry and 3D molecular structure modeling study was done to figure out the optical resolution mechanism through the membrane. Effects of degree of crosslinking, feed concentration, operating pressure and different kinds of feed solution on the membrane performances were studied. As results, it was found that with increasing degree of crosslinking and membrane thickness, and decrease in the concentration of the feed solution and smaller size of solutes, the enantinselectivity of the membrane was improved. When the sodium alginate membranes with 80% of swelling index and 79${\mu}{\textrm}{m}$ of thickness were used, 77% of enantiomeric excess was obtained.

Adamantyl-based N-arylamide as a Novel Series of Androgen Receptor Antagonists (아다만틸을 기반한 N-아릴아미드 신규 안드로겐 수용체 길항제)

  • Woo, Byoung Young;Shin, Song Seok;Hong, Yong Deog;Joo, Yung Hyup;Jeong, Yeonsu;Lee, Beom-Jin;Kim, Soo-Dong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.43-47
    • /
    • 2020
  • A novel series of adamantyl derivatives of N-aryl amides as androgen receptor antagonists were synthesized and their anti-androgenic activities were evaluated. The N-aryl amides containing adamantyl derivatives had more activity than those lacking adamantyl substitutions. The synergistic effect of bulkiness of the adamantyl group and modulation of electron density on the aromatic ring by pendant groups was crucial to the potent antagonism. Molecular modeling studies were performed to elucidate the interactions between ligands and receptors.

RAIM - A MODEL FOR IODINE BEHAVIOR IN CONTAINMENT UNDER SEVERE ACCIDENT CONDITION

  • KIM, HAN-CHUL;CHO, YEONG-HUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.827-837
    • /
    • 2015
  • Following a severe accident in a nuclear power plant, iodine is a major contributor to the potential health risks for the public. Because the amount of iodine released largely depends on its volatility, iodine's behavior in containment has been extensively studied in international programs such as International Source Term Programme-Experimental Program on Iodine Chemistry under Radiation (EPICUR), Organization for Economic Co-operation and Development (OECD)-Behaviour of Iodine Project, and OECD-Source Term Evaluation and Mitigation. Korea Institute of Nuclear Safety (KINS) has joined these programs and is developing a simplified, stand-alone iodine chemistry model, RAIM (Radio-Active Iodine chemistry Model), based on the IMOD methodology and other previous studies. This model deals with chemical reactions associated with the formation and destruction of iodine species and surface reactions in the containment atmosphere and the sump in a simple manner. RAIM was applied to a simulation of four EPICUR tests and one Radioiodine Test Facility test, which were carried out in aqueous or gaseous phases. After analysis, the results show a trend of underestimation of organic and molecular iodine for the gas-phase experiments, the opposite of that for the aqueous-phase ones, whereas the total amount of volatile iodine species agrees well between the experiment and the analysis result.

Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study

  • Putra, Wira Eka;Salma, Wa Ode;Rifa'i, Muhaimin
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2019
  • Inflammation is the crucial biological process of immune system which acts as body's defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha ($TNF-{\alpha}$) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the proinflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the $TNF-{\alpha}$ or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the $TNF-{\alpha}$ and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases. Finally, this study needs further examination and evaluation to validate the potency of Sambucus bioactive compounds.

Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges

  • Dayem, Ahmed Abdal;Lee, Soo Bin;Kim, Kyeongseok;Lim, Kyung Min;Jeon, Tak-il;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.295-303
    • /
    • 2019
  • Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic ${\beta}$ cells. Large-scale production of insulin-secreting ${\beta}$ cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine.

Discovery of Anticancer Activity of Amentoflavone on Esophageal Squamous Cell Carcinoma: Bioinformatics, Structure-Based Virtual Screening, and Biological Evaluation

  • Chen, Lei;Fang, Bo;Qiao, Liman;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.718-729
    • /
    • 2022
  • Esophageal squamous cell carcinoma (ESCC) is the most common primary esophageal malignancy with poor prognosis. Here, due to the necessity for exploring potential therapies against ESCC, we obtained the gene expression data on ESCC from the TCGA and GEO databases. Venn diagram analysis was applied to identify common targets. The protein-protein interaction network was constructed by Cytoscape software, and the hub targets were extracted from the network via cytoHubba. The potential hub nodes as drug targets were found by pharmacophore-based virtual screening and molecular modeling, and the antitumor activity was evaluated through in vitro studies. A total of 364 differentially expressed genes (DEGs) in ESCC were identified. Pathway enrichment analyses suggested that most DEGs were mainly involved in the cell cycle. Three hub targets were retrieved, including CENPF, CCNA2 (cyclin A), and CCNB1 (cyclin B1), which were highly expressed in esophageal cancer and associated with prognosis. Moreover, amentoflavone, a promising drug candidate found by pharmacophore-based virtual screening, showed antiproliferative and proapoptotic effects and induced G1 in esophageal squamous carcinoma cells. Taken together, our findings suggested that amentoflavone could be a potential cell cycle inhibitor targeting cyclin B1, and is therefore expected to serve as a great therapeutic agent for treating esophageal squamous cell carcinoma.

In-silico characterization and structure-based functional annotation of a hypothetical protein from Campylobacter jejuni involved in propionate catabolism

  • Mazumder, Lincon;Hasan, Mehedi;Rus’d, Ahmed Abu;Islam, Mohammad Ariful
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.43.1-43.12
    • /
    • 2021
  • Campylobacter jejuni is one of the most prevalent organisms associated with foodborne illness across the globe causing campylobacteriosis and gastritis. Many proteins of C. jejuni are still unidentified. The purpose of this study was to determine the structure and function of a non-annotated hypothetical protein (HP) from C. jejuni. A number of properties like physiochemical characteristics, 3D structure, and functional annotation of the HP (accession No. CAG2129885.1) were predicted using various bioinformatics tools followed by further validation and quality assessment. Moreover, the protein-protein interactions and active site were obtained from the STRING and CASTp server, respectively. The hypothesized protein possesses various characteristics including an acidic pH, thermal stability, water solubility, and cytoplasmic distribution. While alpha-helix and random coil structures are the most prominent structural components of this protein, most of it is formed of helices and coils. Along with expected quality, the 3D model has been found to be novel. This study has identified the potential role of the HP in 2-methylcitric acid cycle and propionate catabolism. Furthermore, protein-protein interactions revealed several significant functional partners. The in-silico characterization of this protein will assist to understand its molecular mechanism of action better. The methodology of this study would also serve as the basis for additional research into proteomic and genomic data for functional potential identification.

N-Terminal Modifications of Ubiquitin via Methionine Excision, Deamination, and Arginylation Expand the Ubiquitin Code

  • Nguyen, Kha The;Ju, Shinyeong;Kim, Sang-Yoon;Lee, Chang-Seok;Lee, Cheolju;Hwang, Cheol-Sang
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.158-167
    • /
    • 2022
  • Ubiquitin (Ub) is post-translationally modified by Ub itself or Ub-like proteins, phosphorylation, and acetylation, among others, which elicits a variety of Ub topologies and cellular functions. However, N-terminal (Nt) modifications of Ub remain unknown, except the linear head-to-tail ubiquitylation via Nt-Met. Here, using the yeast Saccharomyces cerevisiae and an Nt-arginylated Ub-specific antibody, we found that the detectable level of Ub undergoes Nt-Met excision, Nt-deamination, and Nt-arginylation. The resulting Nt-arginylated Ub and its conjugated proteins are upregulated in the stationary-growth phase or by oxidative stress. We further proved the existence of Nt-arginylated Ub in vivo and identified Nt-arginylated Ub-protein conjugates using stable isotope labeling by amino acids in cell culture (SILAC)-based tandem mass spectrometry. In silico structural modeling of Nt-arginylated Ub predicted that Nt-Arg flexibly protrudes from the surface of the Ub, thereby most likely providing a docking site for the factors that recognize it. Collectively, these results reveal unprecedented Nt-arginylated Ub and the pathway by which it is produced, which greatly expands the known complexity of the Ub code.

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba;Kanagaraj Sekar;Anjali Ganjiwale
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.41.1-41.11
    • /
    • 2023
  • The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.