• Title/Summary/Keyword: Molecular memory

Search Result 163, Processing Time 0.031 seconds

Memory allocation at the neuronal and synaptic levels

  • HyoJin Park;Bong-Kiun Kaang
    • BMB Reports
    • /
    • v.57 no.4
    • /
    • pp.176-181
    • /
    • 2024
  • Memory allocation, which determines where memories are stored in specific neurons or synapses, has consistently been demonstrated to occur via specific mechanisms. Neuronal allocation studies have focused on the activated population of neurons and have shown that increased excitability via cAMP response element-binding protein (CREB) induces a bias toward memory-encoding neurons. Synaptic allocation suggests that synaptic tagging enables memory to be mediated through different synaptic strengthening mechanisms, even within a single neuron. In this review, we summarize the fundamental concepts of memory allocation at the neuronal and synaptic levels and discuss their potential interrelationships.

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.

Impaired Taste Associative Memory and Memory Enhancement by Feeding Omija in Parkinson's Disease Fly Model

  • Poudel, Seeta;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.646-652
    • /
    • 2018
  • Neurodegeneration can result in memory loss in the central nervous system (CNS) and impairment of taste and smell in the peripheral nervous system (PNS). The neurodegeneration seen in Parkinson's disease (PD) is characterized by functional loss of dopaminergic neurons. Recent studies have also found a role for dopaminergic neurons in regulating taste memory rewards in insects. To investigate how taste memories and sugar sensitivity can be affected in PD, we utilized the $DJ-1{\beta}$ mutant fruit fly, $DJ-1{\beta}^{ex54}$, as a PD model. We performed binary choice feeding assays, electrophysiology and taste-mediated memory tests to explore the function of the $DJ-1{\beta}$ gene in terms of sugar sensitivity as well as associative taste memory. We found that PD flies exhibited an impaired ability to discriminate sucrose across a range of sugar concentrations, with normal responses at only very high concentrations of sugar. They also showed an impairment in associative taste memory. We highlight that the taste impairment and memory defect in $DJ-1{\beta}^{ex54}$ can be recovered by the expression of wild-type $DJ-1{\beta}$ gene in the dopaminergic neurons. We also emphasized the role of dopaminergic neurons in restoring taste memory function. This impaired memory property of $DJ-1{\beta}^{ex54}$ flies also allows them to be used as a model system for finding supplementary dietary foods that can improve memory function. Here we provide evidence that the associative taste memory of both control and $DJ-1{\beta}^{ex54}$ flies can be enhanced with dietary supplementation of the medicinal plant, omija.

Characterization of Spironaphthooxazine Derivative Thin Films for Optical Memory

  • Kang, Young-Soo;An, Sang-Do;Jang, Ju-Seog;Kim, Byung-Kyu;Kim, Yong-Joo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.49-52
    • /
    • 2001
  • The derivatives of spironaphthooxazine gause photoisomerization when they are illuminate with UV light. We investigated the photoisomerization of spironaphthooxazine derivatives for holographic memory. Langmuir-Blodgett (LB) films contain amphiphile spironaphthooxazine derivatives which can be applied in molecular devices by a change of molecular level energy and a refractive index. In order to investigate the photoisomerization of spironaphthooxazine derivatives at the air/water energy and a refractive index. In order to investigate the photoisomerization of spironaphthooxazine derivatives at the air/water interfaces, spironaphthooxazine derivatives with side alkyl chains were synthesized. The films of the spironaphthooxazine derivatives were characterized by the measurement of UV/vis spectroscopy, Brewster Angle Microscopy (BAM) and Atomic Force Microscopy (AFM). The monolayers of the spironaphthooxazine derivatives mixed with stearic acid were stable at the air/water interface and visualized by the measurement of BAM. The spironaphthooxazine derivative monolayers on the glass surface showed the maximum efficiency of diffraction as 0.99% by the measurement of holography.

  • PDF

The Role of Lymphatic Niches in T Cell Differentiation

  • Capece, Tara;Kim, Minsoo
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.515-523
    • /
    • 2016
  • Long-term immunity to many viral and bacterial pathogens requires$ CD8^+$ memory T cell development, and the induction of long-lasting$ CD8^+$ memory T cells from a $na{\ddot{i}}ve$, undifferentiated state is a major goal of vaccine design. Formation of the memory$ CD8^+$ T cell compartment is highly dependent on the early activation cues received by $na{\ddot{i}ve}$ $CD8^+$ T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs.

Strengthened connections between engrams encode specific memories

  • Kim, Ji-il;Choi, Dong Il;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.369-370
    • /
    • 2018
  • In previous studies, memory storage was localized to engram cells distributed across the brain. While these studies have provided an individual cellular profile of engram cells, their synaptic connectivity, or whether they follow Hebbian mechanisms, remains uncertain. Therefore, our recent study investigated whether synapses between engram cells exhibit selectively enhanced structural and functional properties following memory formation. This was accomplished using a newly developed technique called "dual-eGRASP". We found that the number and size of spines on CA1 engram cells that receive inputs from CA3 engram cells were larger than at other synapses. We further observed that this enhanced connectivity correlated with induced memory strength. CA3 engram synapses exhibited increased release probability, while CA1 engram synapses produced enhanced postsynaptic responses. CA3 engram to CA1 engram projections showed strong occlusion of long-term potentiation. We demonstrated that the synaptic connectivity of CA3 to CA1 engram cells was strengthened following memory formation. Our results suggest that Hebbian plasticity occurs during memory formation among engram cells at the synapse level.

Gene repressive mechanisms in the mouse brain involved in memory formation

  • Yu, Nam-Kyung;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.199-200
    • /
    • 2016
  • Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls.

Polycomb-Mediated Gene Silencing in Arabidopsis thaliana

  • Kim, Dong-Hwan;Sung, Sibum
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.841-850
    • /
    • 2014
  • Polycomb group (PcG) proteins are conserved chromatin regulators involved in the control of key developmental programs in eukaryotes. They collectively provide the transcriptional memory unique to each cell identity by maintaining transcriptional states of developmental genes. PcG proteins form multi-protein complexes, known as Polycomb repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2). PRC1 and PRC2 contribute to the stable gene silencing in part through catalyzing covalent histone modifications. Components of PRC1 and PRC2 are well conserved from plants to animals. PcG-mediated gene silencing has been extensively investigated in efforts to understand molecular mechanisms underlying developmental programs in eukaryotes. Here, we describe our current knowledge on PcG-mediated gene repression which dictates developmental programs by dynamic layers of regulatory activities, with an emphasis given to the model plant Arabidopsis thaliana.

Synthesis and Characterization of DNA-Templated Nanostructures: Toward Molecular Electronics

  • Lee, Jeong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.92.1-92.1
    • /
    • 2013
  • Molecular electronics has been the subject of intese research for many years because of the fundamental interest in molecular charge transport and potential applications, such as (bio)nanosensors and molecular memory devices. Molecular electronics requires a method for making reliable eletrical contacts to singlemolecules. To date, several approaches have been reported: scanning-probe microscopy, mechanical break junctions, nano patterning, and direct deposition of electrode on a self-assembled monolayers. However, most methods are laborious and difficult for large-scale application and more importantly, cannot control the number of moleucles in the junction. Recently, DNA has been used as a template for metallic nanostructures (e.g., Ag, Pd, and Au nanowires) through DNA metallization process. Furthermore, oligodeoxynucleotides have been tethered to organic molecules by using conventional organic reactions. Collectively, these techniques should provide an efficient route toward reliable and reproducible molecular electronic devices with large-scale fabrication. Therefore, I will present a paradigm for the fabrication of moleuclar electronic devices by using micrometer-sized DNA-singe organic molecule and DNA triblock structures.

  • PDF