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Polycomb group (PcG) proteins are conserved chromatin 
regulators involved in the control of key developmental 
programs in eukaryotes. They collectively provide the tran-
scriptional memory unique to each cell identity by maintain-
ing transcriptional states of developmental genes. PcG 
proteins form multi-protein complexes, known as Polycomb 
repressive complex 1 (PRC1) and Polycomb repressive 
complex 2 (PRC2). PRC1 and PRC2 contribute to the stable 
gene silencing in part through catalyzing covalent histone 
modifications. Components of PRC1 and PRC2 are well 
conserved from plants to animals. PcG-mediated gene si-
lencing has been extensively investigated in efforts to un-
derstand molecular mechanisms underlying developmental 
programs in eukaryotes. Here, we describe our current 
knowledge on PcG-mediated gene repression which dic-
tates developmental programs by dynamic layers of regula-
tory activities, with an emphasis given to the model plant 
Arabidopsis thaliana.  
 
1  
INTRODUCTION 
 
In eukaryotes, DNA is packaged into a group of histone proteins 
to form nucleosome, the basic structural unit of chromatin. Di-
mers of four distinct histone proteins (H2A, H2B, H3, and H4) 
constitutes the histone octamer that is a structural scaffold for 
nucleosome. Because DNA is tightly packaged in nucleosome 
and nucleosome often exists as higher-order chromosome struc-
ture, transcriptional regulation in eukaryotes requires elaborate 
transcriptional control machinery.  

In most eukaryotes, a single cell (zygote) is produced after fer-
tilization and develops into functionally and morphologically dis-
tinct multicellular tissues and organs through successive cell 
divisions and differentiation. Multicellular differentiation is 
achieved even though each uniquely differentiated cell contains 
exactly the same genome context. This genetically identical but 
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functionally specialized cell fate is an output of differential tran-
scriptional control in each cell lineage. It has long been a funda-
mental question in biology how a single cell can differentiate into 
functionally specialized cells in multicellular eukaryotes.  

An earlier important clue arose from genetic study using Dros-
ophila as a model organism. Homeotic genes in Drosophila 
determine body identities during development. Mutations in ho-
meotic genes commonly result in various ectopic developments 
of body patterns (i. e., legs grow in the place of antennae) 
(Simon et al., 1992; Soto et al., 1995; Struhl and Akam, 1985). 
Subsequent genetic analyses in Drosophila unveiled a group of 
genes required for a proper control of such homeotic genes, and 
they are collectively called Polycomb group (PcG) genes (Lewis, 
1978). PcG proteins participate in cell fate determination through 
their role in maintaining silent states of homeotic genes during 
development. In addition, homologs of PcG proteins have also 
been identified from plants and vertebrates, and mutations in 
these genes commonly resulted in homeotic mutations (Akasaka 
et al., 1996; Goodrich et al., 1997). Therefore, PcG proteins 
appear to be evolutionarily well conserved transcriptional regula-
tors that are pivotal in key developmental programs.  

In this review, we discuss recent advances in understanding 
on the function of PcG proteins during various developmental 
programs, with a focus given to Arabidopsis as a plant model 
system. 

 
POLYCOMB REPRESSIVE COMPLEXES IN  
ARABIDOPSIS 
 
PcG proteins form evolutionally conserved multi-protein com-
plexes playing critical roles in the control of developmental pro-
cesses in plants and other eukaryotes (Kim et al., 2009; Molitor 
and Shen, 2013). PcG-containing complexes are generally classi-
fied into two different groups of multi-protein complexes based on 
their biochemical properties; Polycomb repressive complex 2 
(PRC2) and Polycomb repressive complex 1 (PRC1) (Margueron 
and Reinberg, 2011; Schatlowski et al., 2008). Both complexes 
are responsible for gene repression mainly through mediating 
covalent modifications of histone proteins, notably Histone H3 
Lys 27 (H3K27) methylation by PRC2 and Histone H2A (H2A) 
ubiquitination by PRC1. 
 
Polycomb repressive complex 2 (PRC2) 
PcG genes were originally isolated from genetic screens in 
Drosophila that were designed to identify genes involved in con-
trolling homeotic gene expression (Simon and Kingston, 2013). 
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Studies using PcG proteins in Drosophila have served as a 
good model system to elucidate mechanistic details of PcG pro-
teins in eukaryotes (Schwartz and Pirrotta, 2007; Simon and 
Kingston, 2009). Biochemical purification recognized four core 
components of PRC2 in Drosophila, Enhancer of zeste (E(z)), 
Extra sex combs (ESC), Suppressor of zeste 12 (Su(z)12), and 
Nucleosome-remodeling factor 55 kDa subunit (Nurf55) 
(Czermin et al., 2002; Muller et al., 2002). These four subunits 
mediate histone methyltransferase (HMTase) activity of PRC2 
on H3K27. Each subunit has a distinct role: E(z) harbors a cata-
lytic Su(var)3-9, Enhancer-of-zeste and Trithorax (SET) domain 
for histone methylation; ESC enhances the catalytic activity of 
E(z); Su(z)12 and Nurf55 are necessary for the nucleosome 
association (Cao et al., 2002) (Fig. 1). ESC is also able to bind to 
H3K27me3 histone mark, stabilizing and boosting the catalytic 
activity of PRC2. These coordinated activities of each PRC2 
subunit reinforce self-propagation of H3K27me3 repressive 
marks at target chromatin during successive cell divisions and 
thus establishing stable chromatin contexts throughout mitosis 
(Margueron et al., 2009; Steffen and Ringrose, 2014).  

All four core subunits of PRC2 exist in Arabidopsis. Homologs 
of Drosophila E(z), the H3K27 methyltransferase, include 
CURLY LEAF (CLF), SWINGER (SWN), and MEDEA (MEA); 
Three homologs of Su(z)12 are EMBRYONIC FLOWER 2 
(EMF2), VERNALIZATION 2 (VRN2), FERTILIZATION INDE-
PENDENT SEED 2 (FIS2).  MULTI-SUBUNIT SUPPRESSOR 
OF IRA 1-5 (MSI1-5) are homologs of NURF55. FERTILIZA-
TION INDEPENDENT ENDOSPERM (FIE) is a sole homolog of 
ESC. Detailed information on the components of Arabidopsis 
PRC2 is shown in Fig. 1. 

In Arabidopsis, PRC2 complexes are grouped into three dis-
tinctive complexes largely based on three Su(z)12 homologs 
(FIS2-PRC2, EMF2-PRC2, and VRN2-PRC2). MSI1 and FIE 
are constitutively expressed and thus serve as common subunits 
for all PRC2. On the other hand, expression of FIS2 and MEA 
are restricted in the female gametophyte and seed tissues, con-
tributing to normal seed development (Kohler et al., 2003). For 
example, FIS2-PRC2 prohibits the endosperm formation in the 
absence of fertilization and represses endosperm proliferation 

after fertilization. EMF2-PRC2 notably contributes to the 
sporophytic development (i.e. floral organ). VRN2-PRC2 pro-
motes floral transition in response to vernalization (long-term 
cold temperature) through the repression of a potent floral re-
pressor, FLOWERING LOCUS C (FLC) in Arabidopsis (De 
Lucia et al., 2008; Kim et al., 2009). Many developmental genes 
are de-repressed in the mutants of PRC2 components, thus 
resulting in defects in various plant developmental programs, 
ranging from seed germination to floral transition (Kim et al., 
2012; Muller and Goodrich, 2011). While FIS2-PRC2 controls 
proper development of endosperm (a part of seeds that does not 
develop further after germination), EMF2-PRC2 and VRN2-
PRC2 are essential for plant development. There are clear func-
tional redundancies between components of EMF2-PRC2 and 
VRN2-PRC2. Genetic analysis demonstrated that VRN2 and 
EMF2 are functionally redundant and so CLF and SWN are in 
Arabidopsis (Lafos et al., 2011; Tang et al., 2012). vrn2 emf2 or 
clf swn double mutants commonly exhibit undifferentiated em-
bryo-like cell growth phenotypes (Chanvivattana et al., 2004; 
Schubert et al., 2005). Therefore, EMF2-PRC2 and VRN2-
PRC2 are essential for ensuring proper cell differentiation and 
growth during plant development (Chanvivattana et al., 2004; 
Makarevich et al., 2006; Schubert et al., 2005; Tang et al., 2012). 
It is, however, still not clear how these three PRC2 complexes 
exert cooperative and/or distinctive controls over developmental 
genes in time- and tissue-specific manners in plants. 

Major function of PRC2 is to repress transcription through de-
positing repressive histone marks (i.e. H3K27me3) on target 
chromatin (He et al., 2013; Pien and Grossniklaus, 2007). Ac-
cumulation of H3K27me3 mark at chromatin is highly correlated 
with the level of gene repression. High-throughput genomic ap-
proaches have significantly improved our understanding on the 
importance of PRC2-mediated H3K27me3 in plant development. 
About 4,400 genes are marked with H3K27me3, which account 
for 17% annotated genes in Arabidopsis. H3K27me3 marks are 
mostly localized to individual genes in Arabidopsis, unlike in 
animals where H3K27me3 is mainly enriched at heterochroma-
tin region (Zhang et al., 2007). Interestingly, genome-wide profile 
of H3K27me3 mark is shown to be changed in time or tissue-

Fig. 1. Conserved components of PRC1
and PRC2 between Drosophila and
Arabidopsis. Core components of Dros-
ophila PRC2 and PRC1 (upper) and the
homologous subunits found in Arabidopsis
(bottom) were presented. Functional
equivalents of PcG complex are indicat-
ed with the same color. EMF1 and VRN1
are plant-specific proteins in Arabidopsis
PRC1-like complex.  
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dependent manners (Bouyer et al., 2011; He et al., 2012; Lafos 
et al., 2011; Roudier et al., 2011; Weinhofer et al., 2010). For 
example, H3K27me3-enriched loci are different in various tis-
sues, such as shoot apical meristem (SAM), root, endosperm, 
and leaf tissues, indicating that H3K27me3 deposition is dynam-
ically controlled during the development of different tissues. 

 
Polycomb repressive complex 1 (PRC1) 
The core subunits of PRC1 found in Drosophila are Posterior 
sex combs (Psc), drosophila RING (dRING), Polyhomeotic (Ph), 
and Polycomb (Pc) (Fig. 1). These are classified into two groups 
based on their biochemical function: One group (known as a 
writer group) has catalytic activity to mono-ubiquitinate histone 
H2A (Psc and dRING); the other group (known as a reader 
group) can recognize certain modified histone marks (Pc). 
Mono-ubiquitination of H2A is mediated by Psc and dRING pro-
teins that belong to a subfamily of E3 ubiquitin ligases. Classical-
ly, E3 ubiquitin ligases play a role in the degradation of protein 
through 26S proteasome machinery (Smalle and Vierstra, 2004). 
Unlike classical E3 ubiquitin ligases, E3 ubiquitin ligases, Psc 
and dRING, in PRC1 do not trigger 26S proteasome-mediated 
protein degradation. Instead, mono-ubiquitination of histone H2A 
(H2Aub1) results in transcriptional repression and chromatin 
compaction (Wang et al., 2004; Weake and Workman, 2008). In 
mammals, the ubiquitination activity of RING1B, a homolog of 
dRING, is strongly enhanced by the association with BMI1, a 
Psc homolog, through the RING–RING formation (Ben-Saadon 
et al., 2006; Buchwald et al., 2006; Cao et al., 2005).  

In Arabidopsis, three homologs of Psc (AtBMI1a, AtBMIb, and 
AtBMI1c) and two homologs of dRING (AtRING1a and 
AtRING1b) have been identified (Sanchez-Pulido et al., 2008; 
Xu and Shen, 2008). Several studies have validated the enzy-
matic activity of these E3 ubiquitin ligases catalyzing H2Aub1 
modification (Bratzel et al., 2010; Li et al., 2011; Yang et al., 
2013). Therefore, the H2Aub1 modification appears to be a 
common mechanism by PRC1 in eukaryotes.  

For example, levels of H2Aub1 accumulation at PcG target 
genes, LEC1, FUS3, and STM, are significantly reduced in 
atring1a atring1b double mutants, despite that the levels of 
H3K27me3 accumulation remain unchanged (Bratzel et al., 
2010; Xu and Shen, 2008). This indicates that PRC1 acts at the 
downstream of PRC2 and that H3K27me3 alone is to some 
extent not sufficient to trigger the silencing of common targets of 
PRC1 and PRC2. Similar result was also observed from the 
study of HOX gene regulation using embryonic stem cells (Cao 
et al., 2005; Eskeland et al., 2010). The reduction of H2Aub1 by 
knocking out of RING1B in mammalian cells caused the loss of 
HOX gene silencing while the level of H3K27me3 at HOX locus 
is not altered. Therefore, there is a clear epigenetic crosstalk 
between PRC1 and PRC2, and the coordinated function of two 
complexes are essential for the proper control of PcG target 
genes.  

The second group (reader) in PRC1, Pc, physically links func-
tional crosstalk between PRC2 and PRC1. Drosophila Pc pro-
tein contains N-terminal chromo-domain (a chromatin binding 
domain) and C-terminal C-BOX domain (involved in PRC1 com-
plex assembly) (Bardos et al., 2000). Especially, chromo-domain 
of Pc protein binds to H3K27me3 histone mark, which is cata-
lyzed by PRC2 (Bernstein et al., 2006b; Min et al., 2003). There-
fore, the histone binding activity of Pc contributes to the physical 
link between PRC2 and PRC1.  

Although E3 ubiquitin ligases (Psc and dRING) are well con-
served across many eukaryotes, no apparent homolog of either 
Pc or Ph is found based on sequence homology in Arabidopsis 
genome. However, several functional equivalents of Drosophila 

Pc have been identified in Arabidopsis. One of them is a chro-
mo-domain protein, LIKE-HETEROCHROMATIN PROTEIN 
(LHP1)/ TERMINAL FLOWER2 (TFL2) (Mylne et al., 2006; 
Sung et al., 2006). Like Pc in Drosophila, LHP1 harbors a chro-
mo-domain at its N-terminal region. LHP1 displays the binding 
specificity to H3K27me3 histone mark through its chromo-
domain (Exner et al., 2009). In addition, a genome-wide analysis 
of LHP1 showed that LHP1-enriched loci are highly overlapped 
with H3K27me3 enriched loci (Turck et al., 2007; Zhang et al., 
2007). Another characteristic of LHP1 as a functional equivalent 
of Pc is that LHP1 physically interacts with AtRING1a, a compo-
nent of PRC1 (Xu and Shen, 2008). Taken together, these data 
support the idea that LHP1 plays a role, similar to Drosophila Pc, 
as a reader component of PRC1 and forms a PRC1-like com-
plex with AtRING1 and AtBMI1 proteins in Arabidopsis. Up to 
date, however, no functional homolog of Ph has been identified 
in Arabidopsis. Detailed information of components of PRC1 are 
shown in Fig. 1. 

Two DNA-binding proteins, EMBRYONIC FLOWER1 (EMF1) 
and REDUCED VERNALIZATION RESPONSE 1 (VRN1) ap-
pear to function as components of PRC1 in Arabidopsis (Aubert 
et al., 2001; Calonje et al., 2008; Levy et al., 2002). Lesions in 
EMF1 resulted in pleiotropic phenotypes similar to mutants in 
PcG genes (Kim et al., 2012; Moon et al., 2003). EMF1 interacts 
with AtRING1a/1b and AtBMI1a/1b proteins in vitro and is re-
quired for proper H2Aub1 modification at PRC1 target chromatin 
(Bratzel et al., 2010). In vitro biochemical assay showed that 
EMF1 binds to DNA and inhibits the chromatin remodeling simi-
lar to the activity of Drosophila Psc (Beh et al., 2012; Calonje et 
al., 2008). A genomic-wide mapping using chromatin-
immunoprecipitation (ChIP) followed by tiling-microarray analysis 
showed that EMF1 is highly enriched at loci marked with 
H3K27me3 (Kim et al., 2012). Therefore, it is likely that EMF1 is 
a component of PRC1 and cooperates with PRC2 through 
H3K27me3 histone mark. Because EMF1 does not show any 
sequence similarity with known functional domains of proteins, 
mechanistic details on how EMF1 exerts its function in Ara-
bidopsis remain elusive. A B3-domain protein, VRN1 was identi-
fied from vernalization mutant screening in Arabidopsis (Levy et 
al., 2002). VRN1 is essential for the stable repression of the 
floral repressor, FLC, in response to vernalization, long-term cold. 
In vrn1 mutants, a repressive histone mark, H3K9me2 fails to 
accumulate at FLC, but H3K27me3 is normally enriched at FLC 
in vernalization, indicating that VRN1 is associated with H3K9 
methylation at FLC (Bastow et al., 2004; Sung and Amasino, 
2004). VRN1 binds to DNA in a non-sequence specific manner 
(Levy et al., 2002). It is unknown how VRN1 specifically partici-
pates in the repression of FLC in the absence of sequence spec-
ificity.  

Several studies identified proteins that directly interact with 
LHP1. Up to date, EARLY IN SHORT DAYS7 (ESD7), 
INCURVATA2 (ICU2), SCARECROW (SCR) and SHORT 
VEGETATIVE PHASE (SVP), CYCLOPHILIN71 (AtCYP71), 
MULTICOPY SUPRESSOR OF IRA 1 (MSI1) and LHP1-
interacting Factor 2 (LIF2) were shown to interact with LHP1 
(Barrero et al., 2007; Cui and Benfey, 2009; del Olmo et al., 
2010; Derkacheva et al., 2013; Latrasse et al., 2011; Li and 
Luan, 2011). Functional implication of these LHP1 interacting 
proteins remains obscure in regard to their roles in PRC1-
mediated gene repression. However, diverse LHP1 interacting 
proteins indicates that LHP1 plays various roles in plant devel-
opmental programs through the interaction with a variety of regu-
latory proteins. Therefore, identification and characterization of 
PRC1 components would allow us to understand molecular 
details on PRC1 in plants.
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Fig. 2. Several proposed modes of the recruitment of PcG and TrxG complexes. (A) PcG complexes, PRC1 or PRC2 physically interacts with 
transcription factors (TFs) or lncRNAs to be recruited to specific target loci, containing PRE. Recruited PRC1 and PRC2 catalyze H2Aub1 (red 
circle) and H3K27me3 (green triangle) on target loci, respectively. Some TFs (i.e. AG) competes PRC2 out of target loci in a time-dependent 
manner. (B) TrxG complex is recruited to target loci through the interaction with TFs or lncRNAs. Recruited TrxG complex catalyze H3K4me3 
(blue triangle) or H3K36me3 (purple pentagon) which inhibit PRC2 activity. TrxG-recruiting lncRNAs or DNA elements have not been identified 
in Arabidopsis.  
 
 
 
TrxG complex antagonize PRC2 
Trithorax group (TrxG) proteins activate gene expression 
through depositing active histone marks, H3K4me3 and 
H3K36me3 at target chromatin, which often overlap with PcG 
target chromatin, thus antagonize PcG function (Papp and 
Muller, 2006; Schwartz and Pirrotta, 2008). As in the case of 
PRC2, TrxG proteins are also well conserved in eukaryotes 
(Ringrose and Paro, 2004; Schuettengruber et al., 2007). In 
yeast, H3K4me3 is catalyzed by TrxG-containing complex called 
as complex proteins associated with Set1 (COMPASS) (Mohan 
et al., 2011). COMPASS-like complex is also conserved in other 
higher eukaryotes, such as mixed lineage leukemia (MLL)-
complex in mammals.  

H3K27me3 and its antagonistic H3K4me3 histone marks are 
generally localized around transcription start sites (TSSs) at 
target loci, likely competing with each other. In Drosophila, the 
presence of H3K4me3 and H3K36me3 inhibits the catalytic 
activity of PRC2 (Schmitges et al., 2011; Yuan et al., 2011). 
Similarly, histone acetylation at H3K27 (H3K27ac) directly inhibit 
methylation of H3K27 by PRC2, as both modifications cannot 
occur at the same residue (Pasini et al., 2010; Tie et al., 2009; 
2014). Another layer of regulation of the antagonistic effect be-
tween PcG and TrxG proteins is mediated by H3K27 
demethylases, such as Ultrathorax (UTX), which directly associ-
ate with COMPASS complex and enhance gene activation by 
the removal of H3K27me3 from target chromatin (Lee et al., 
2007a; 2007b).  

Similar antagonistic phenomena between PcG and TrxG pro-
teins have been also reported in Arabidopsis. The first identified 
TrxG protein in Arabidopsis is ARABIDOPSIS HOMOLOG OF 
TRITHORAX1 (ATX1), a SET-domain protein. Mutations in 
ATX1 resulted in a number of pleiotropic phenotypes, including 

early flowering due to the severe reduction of H3K4me3 at FLC 
(Pien et al., 2008; Saleh et al., 2008). Subsequently, ATX1-like 
genes such as ARABIDOPSIS TRITHORAX-RELATED 3 
(ATXR3)/SET DOMAIN GROUP 2 (SDG2) and ARABIDOPSIS 
TRITHORAX-RELATED 7 (ATXR7)/SET DOMAIN GROUP 25 
(SDG25) are also found to act as H3K4me3 methyltransferases 
in Arabidopsis (Tamada et al., 2009; Yun et al., 2012). Another 
SET-domain gene, EARLY FLOWERING IN SHORT DAYS 
(EFS), a homolog of Drosophila absent small homeotic disks1 
(ASH1) (Tripoulas et al., 1994), is also identified from mutant 
screening for early flowering in Arabidopsis (Soppe et al., 1999). 
H3K4me3 and H3K36me3 levels are decreased in efs mutants, 
indicating EFS acts as a transcriptional activator through catalyz-
ing H3K4 and H3K36 methylation (Kim et al., 2005; Ko et al., 
2010; Zhao et al., 2005). Antagonistic relationship between 
H3K36me3 and H3K27me3 is recently demonstrated in the 
cold-induced epigenetic control of FLC (Yang et al., 2014a), 
suggesting that antagonistic effect between TrxG and PcG pro-
teins is also one of well-conserved phenomena in eukaryotes. 

However, it should be noted that genome-wide analyses indi-
cate the enrichment of H3K4me3 by TrxG and that of 
H3K27me3 by PRC2 are not always mutually exclusive. Rather, 
both histone marks do co-reside in a number of developmentally 
regulated genes in both animals and plants (Bernstein et al., 
2006a; Jiang et al., 2008; Roudier et al., 2011; Zhang et al., 
2007; 2009). These bivalent histone marks of H3K4me3 and 
H3K27me3 suggest that the regulation of numerous PcG/TrxG 
target genes can be achieved by delicate balances between 
H3K4me3 and H3K27me3 marks (Schwartz et al., 2010).  

Like PcG complexes, TrxG proteins act in tissue- and time-
dependent manners. A TrxG-interacting protein, WDR5, binds to 
a long non-coding RNAs (lncRNAs), HOXA TRANSCRIPT AT 
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THE DISTAL TIP (HOTTIP) and NETTOIE SALMONELLA PAS 
THEILER’S (NeST), which in turn coordinate the activation of 
several TrxG target genes through H3K4 methylation (Gomez et 
al., 2013; Wang and Chang, 2011; Yang et al., 2014b). Up to 
date, no similar ncRNA has been identified in plants. Instead, a 
plant specific SAND domain protein, ULTRAPETALA1 (ULT1), 
has been reported to bind to ATX1 and may be responsible for 
guiding the ATX1-containing complex to target loci (Carles and 
Fletcher, 2009). It is still poorly understood how various TrxG 
complexes can be recruited onto their specific target loci.  

 
RECRUITMENT OF PcG COMPLEX TO TARGET LOCI 

In Arabidopsis, many developmental genes are dynamically 
marked by H3K27me3 in tissue- and time-specific manners 
(Berr et al., 2009; Deng et al., 2013; Lafos et al., 2011; Oh et al., 
2008; Roudier et al., 2011; Zhang et al., 2007). Given that no 
core subunit of PRC2 has apparent sequence-specific DNA 
binding ability, initial recruitment, maintenance, and removal of 
PRC2 may not be simple.  

Several mechanisms to direct PRC2 to its target loci have 
been suggested (Fig. 2). In Drosophila, PRC2 physically inter-
acts with DNA-binding proteins that specifically recognize 
Polycomb Response Elements (PREs) (Ringrose and Paro, 
2004; Schwartz and Pirrotta, 2008). In mammals, consensus 
DNA motifs in PRE are not obvious, but PRC2 tends to bind to 
CpG-rich domain region (Ku et al., 2008; Sing et al., 2009; Woo 
et al., 2010). Alternatively, a plethora of lncRNAs has been iden-
tified to associate with PRC2 and suggested as potential PRC2 
recruiters, capable of directing PRC2 to target chromatin in cis or 
in trans. 

Currently, two different types of PRC2 recruitment mecha-
nisms have been proposed in Arabidopsis. One is transcription 
factors (TFs)-mediated and the other is lncRNA-mediated (Fig. 
2). Conceptually, TFs generally recognize and bind to certain 
DNA sequence. Several DNA binding proteins have been shown 
to bind to PREs and the bindings are required for the PRC2-
mediated repression (He et al., 2013; Schwartz and Pirrotta, 
2008). PREs harbor DNA sequence specifically recognized by 
certain TFs that in turn aid the recruitment of PRC2 by direct 
interaction in time- or tissue- specific manners. Several cases of 
TFs-mediated PRC2 targeting mechanisms are described below.  
A MYB-domain transcription factor, ASYMMETRIC LEAVES1 
(AS1), controls the proximo-distal patterning in leaves (Byrne et 
al., 2000; Chua et al., 2005). AS1 physically interacts with a 
LOB-domain transcription factor, AS2, to form a protein complex 
which acts to silence SAM-specific homeobox domain genes, 
such as BREIPEDICELLUS (BP) and KNOTTED-LIKE FROM 
ARABIDOPSIS THALIANA2 (KNAT2) in leaf tissue (Guo et al., 
2008; Iwakawa et al., 2002; Lin et al., 2003; Semiarti et al., 
2001). AS1-AS2 complex binds directly to DNA element up-
stream of BP and KNAT2 (Guo et al., 2008). In a recent study, 
AS1-AS2 complex turned out to interact with PRC2 and recruits 
PRC2 to cis-DNA element in the promoter regions of BP and 
KNAT2 (Lodha et al., 2013). Mutations in AS1 or AS2 caused a 
significant reduction in H3K27me3 levels at BP and KNAT2. 
Furthermore, mutations in AS1/AS2-binding DNA elements also 
resulted in decrease of H3K27me3 accumulation and the de-
repression of two KNOX genes. Therefore, AS1/AS2-binding 
DNA elements serve PRE-like function in PRC2-mediated 
KNOX gene silencing in leaf tissue. 

Another candidate PRE was reported from the promoter of 
LEAFY COTYLEDON2 (LEC2) which is involved in the embry-
onic development in Arabidopsis (Berger et al., 2011). LEC2 is 
temporally activated during embryo development and silenced 

upon the completion of seed development (Stone et al., 2001). A 
PRE-like element, named repressive LEC2 element (RLE) was 
identified within the promoter of LEC2. Mutations in RLE abol-
ished the recruitment of PRC2 to LEC2 loci and translocation of 
intact RLE to the promoter region of an unrelated gene, 
FLAVONONE 3-HYDROXYLASE (F3H), is sufficient to trigger 
H3K27me3 enrichment and repression of F3H. However, it is 
still not clear how RLE DNA sequence contributes to the re-
cruitment of PRC2 to LEC2 loci. Identification of RLE-binding 
protein(s) would give us further understanding on the RLE-
mediated PRC2 recruitment.  

A MADS-box transcription factor, AGAMOUS (AG), is required 
to establish the floral organ identity and the termination of floral 
meristem in Arabidopsis (Bowman et al., 1989; Lohmann et al., 
2001). AG recognizes and binds to the CArG motif located up-
stream of WUSCHEL (WUS) and then brings up PRC2 complex 
to allow H3K27me3 to accumulate at WUS chromatin (Liu et al., 
2011). Mutations in two CArG sequences at WUS locus caused 
the reduction in the level of H3K27me3 accumulation as well as 
those of PRC2 and LHP1 enrichment, and thus resulting in the 
derepression of WUS. It suggests that these CArG sequences 
serve as a PRE required for the recruitment of PRC2 (Fig. 2). 
However, it has not been demonstrated that whether AG inter-
acts directly or indirectly with PRC2 to recruit PRC2.  

Although AG clearly acts together with PRC2 to silence target 
genes as described above, another study showed that AG com-
petes with PRC2 to induce its target genes in meristematic cells 
of Arabidopsis (Sun et al., 2014) (Fig. 2). KNUCKLES (KNU) is 
activated by AG at floral stage 6 and is essential for the initiation 
of cell differentiation in floral meristem. Interestingly, there is a 
discrepancy between the induction time point of AG and its 
downstream gene KNU (Sun et al., 2009). AG is turned on by 
WUS during an early time point of floral stage (stage 3). The 
induction of KNU, however, takes place around floral stage 6 in 
meristem tissue, taking at least two more days. This discrepancy 
was explained by the finding of competition between AG and 
PRC2 for a specific PRE DNA element located within the pro-
moter region of KNU. Induced AG at stage 3 needs time to 
compete with and evict PRC2 from the PRE element at the KNU 
promoter. Then at stage 6, the removal of PRC2 allows strong 
activation of KNU to initiate cell differentiation at apical meristem. 
These data indicate that the PRE/PRC2-mediated silencing is 
dynamically controlled in time- and tissue-specific manners.  

A genome-wide ChIP-Seq using FIE-HA transgenic Arabidop-
sis plants identified several common binding motifs, including the 
GA-repeat motif frequently found in Drosophila PREs (Deng et 
al., 2013). Notably, KNU also contains a GA-repeat like motif 
within its PRE sequence. It remains to be tested whether this 
motif actually functions to recruit PRC2 to target loci. In addition, 
it is worth noting that several different DNA motifs are found at 
distinct subsets of FIE-HA binding sites in Arabidopsis, suggest-
ing that PRC2 recruitment in plants can be achieved by many 
different factors.  

VP1/ABI3-LIKE1 (VAL1) and VAL2 encode B3 DNA binding 
domain proteins and they are essential components in the pre-
vention of embryonic trait in somatic tissues after seed develop-
ment by the suppression of embryo-specific genes, such as 
LEC1 and LEC2 (Suzuki et al., 2007). A recent study showed 
that VAL proteins interact with PRC1 and recruit PRC1 to sup-
press embryonic trait genes after germination (Yang et al., 2013). 
This study suggests that VAL proteins act as a PRC1 recruiter, 
especially in seeds. It is not known how the target specificity of 
VALs-PRC1 can be achieved and whether PRE-like DNA ele-
ments are also involved in this process.  

Currently, several long noncoding RNAs (lncRNAs) have been 
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emerged as a PRC2-interacting/recruiting component in eukary-
otes (Fig. 2). The direct interaction between PRC2 and an 
lncRNA, RepA/Xist, was first demonstrated in mammalian X 
chromosome (Zhao et al., 2008). Another lncRNA, HOX ANTI-
SENSE INTERGENIC RNA (HOTAIR), was shown to recruit 
PRC2 to the HOXD locus (Rinn and Chang, 2012; Rinn et al., 
2007). Genome-wide RNA immunoprecipitation followed by 
sequencing approaches revealed that PRC2 associates with a 
large number of lncRNA transcripts, indicating the capability of 
PRC2 binding with over 9,000 transcripts (Kanhere et al., 2010; 
Khalil et al., 2009; Mercer and Mattick, 2013; Zhao et al., 2010).  
Despite that thousands of lncRNAs have been identified or pre-
dicted in silico in Arabidopsis (Liu et al., 2012; Wang et al., 
2014a), only a handful of lncRNAs has been functionally charac-
terized. For example, two lncRNAs, COLD INDUCED LONG 
ANTISENSE INTEAGENIC RNA (COOLAIR) and COLD AS-
SISTED INTRONIC NONCODING RNA (COLDAIR), are in-
volved in the regulation of FLC (Heo and Sung, 2011; 
Swiezewski et al., 2009).  

COOLAIR is a collection of antisense transcripts that have al-
ternative transcripts at 3� end, producing proximal forms or distal 
forms (Liu et al., 2010). The splicing of COOLAIR is functionally 
important and correlates with different states of sense FLC tran-
scription (Marquardt et al., 2014; Wang et al., 2014c). These 
alternative splicing events are controlled by several autonomous 
pathway proteins, including FCA, FPA, and FY. FCA and FPA 
are homologs of the 3� processing factors Cstf64, and Cstf77, 
respectively and FY is a homolog of splicing factor PRP8. Active 
usage of the proximal poly (A) site results in quantitative down-
regulation of FLC, which requires an H3K4me2 demethylase, 
FLD, to catalyze H3K4me2, a repressive mark at FLC chromatin 
(Liu et al., 2010). However, how FLD is activated and utilized by 
the use of proximal poly (A) site of COOLAIR remains unknown.  
COLDAIR is a sense lncRNA originated from the intron region of 
FLC and involved in the vernalization-mediated FLC repression 
(Heo and Sung, 2011). COLDAIR is induced by cold and reach-
es peak at around after 20 days of cold. COLDAIR RNAi knock-
down lines exhibited late flowering phenotypes due to the defect 
in the recruitment of CLF, a component of PRC2, to FLC chro-
matin in response to vernalization, suggesting that COLDAIR is 
required for the recruitment of PRC2 onto FLC upon 
vernalization.  

Another lncRNA, HIDDEN TREASURE1 (HID1), is increased 
uniquely by red-light irradiation and shown to be involved in the 
repression of PHYTOCHROME-INTERACTING FACTOR3 
(PIF3) (Wang et al., 2014b). RNA motifs with stem-loop struc-
tures of HID appear to be important modules for the function of 
HID1. In contrast to either COOLAIR or COLDAIR, HID1 likely 
acts as a trans-acting lncRNA. It is expected that more noncod-
ing RNAs will be identified as important regulatory components, 
including PcG/TrxG-mediated gene regulation.  

PcG-MEDIATED CHROMATIN LOOPING 

Chromosomes, physical storage units of DNA, adopt highly 
organized structure and occupy distinct territories with preferen-
tial locations in the nucleus (Lanctot et al., 2007). Though sever-
al PRE DNA motif and lncRNAs are suggested as recruiting 
factors for PcG-containing complexes, our understanding on 
PREs- and lncRNAs-mediated PcG recruitment is still limited. 
Genome-wide studies in Drosophila showed that PcG proteins 
and discrete PRE DNA-elements cluster into large genomic 
domains, referred to as “Polycomb bodies (Pb)”, which are co-
localized with H3K27me3 marks (Buchenau et al., 1998; 
Messmer et al., 1992; Pirrotta, 1997).  

The development of chromosome conformation capture (3C) 
assay tool allows to measure physical and spatial interactions 
among discrete chromatin regions (Dekker et al., 2002). For 
example, PREs in the homeotic bithorax complex (BX-C) in 
Drosophila exist in contact with other PREs of repressed HOX 
genes by the formation of multiple chromatin loops (Lanzuolo et 
al., 2007). Immuno-fluorescent in situ hybridization (Immuno-
FISH) assay showed that PcG-mediated gene silencing take 
places in Pb loci (Bantignies and Cavalli, 2011; Grimaud et al., 
2006). Therefore, it is conceivable that PcG proteins and PREs 
act to create higher-order structures in nucleus, and these PcG-
condensed Pb loci are critical to ensure proper gene silencing 
through the enrichment of H3K27me3 repressive marks at target 
chromatin (Cheutin and Cavalli, 2014; Schuettengruber et al., 
2009; Schwartz et al., 2006; Sexton et al., 2012).  

Higher-order chromatin structures are also observed at FLC, a 
common target of TrxG and PcG in Arabidopsis (Crevillen et al., 
2013). Using 3C, a gene loop between the 5� and 3� flanking 
regions of the FLC locus appears to be correlated with the state 
of FLC transcription before vernalization. This loop is disrupted 
during vernalization, and the disruption of the loop coincides with 
the cold-induced FLC transcriptional shut-down. Mutations in 
BAF60, which encodes a SWI/SNF ATP-dependent chromatin 
remodeler, exhibit a stronger formation of this gene loop was 
detected and thus resulted in the up-regulation of FLC (Jegu et 
al., 2014).  

The formation of higher-order of chromatin structure is appar-
ent in the study of “FLC” body. Nuclear re-localization events at 
the FLC locus were observed when FLC is repressed by 
vernalization (Rosa et al., 2013). VRN5 encodes a PHD finger 
protein and is required for the PRC2-mediated silencing of FLC 
by vernalization. In vrn5 mutants, this nuclear re-localization by 
vernalization is abolished, indicating that the nuclear re-location 
is one of processes that occur during the vernalization-mediated 
stable silencing of FLC. Taken together, higher-order chromatin 
structural change is likely closely related to transcriptional states 
of PcG and TrxG target genes in Arabidopsis.  

 
CONCLUSION 

PRC2 and PRC1 play critical roles in the maintenance of stable 
transcriptional states of developmental genes through histone 
modifications, H3K27me3 and H2Aub1, respectively. PcG-
mediated repressive marks are antagonized by TrxG complex, 
which catalyzes H3K4me3 and H3K36me3 histone marks. To 
ensure proper development, PcG- and TrxG-mediated regula-
tion of gene expression need to be precisely programmed in 
time- and tissue-dependent manners. One of enigmas in the 
study of PcG- and TrxG-mediated regulation of gene expression 
is how these complexes are recruited to subsets of target genes 
according to developmental programs and environmental cues. 
Up to date, PRE cis-elements, transcription factors (TFs), and 
lncRNAs are proposed to contribute to the recruitment. It is ex-
pected that various mechanisms exist, and further identifications 
of PcG-interacting factors would extend our understanding and 
allow us to extract fundamental principles underlying epigenetic 
regulation of eukaryote developmental programs.  
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