• Title/Summary/Keyword: Molecular imaging

검색결과 801건 처리시간 0.029초

Synthetic approaches toward [18F]Fluoromisonidazole as a hypoxia imaging maker

  • Kwon, Young-Do;Lim, Seok Tae;Jeong, Hwan-Jeong;Sohn, Myung-Hee;Kim, Hee-Kwon
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.9-14
    • /
    • 2015
  • Hypoxia has been shown in many tumors because of a reduced oxygen condition. A useful approach to detect hypoxia is to use molecular imaging. Positron emission tomography (PET), one of the biomedical molecular imaging tools, is the most common non-invasive technique for providing information about physiological and biological events such as diseases. In order to use the PET technique for healthcare, promising molecular probes such as PET tracers required. [$^{18}F$]Fluoromisonidazole ([$^{18}F$]FMISO) is the most widely used in PET tracers for hypoxia. In this review, major developments of the synthetic method of [$^{18}F$]FMISO are discussed.

핵의학적 기법을 이용한 유전자 치료 영상법 (Monitoring Gene Therapy by Radionuclide Approaches)

  • 민정준
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권2호
    • /
    • pp.96-105
    • /
    • 2006
  • Molecular imaging has its root in nuclear medicine and gene therapy monitoring. Therefore, recent progress in the development of non-invasive imaging technologies, particularly nuclear medicine, should allow molecular imaging to play a major role in the field of gene therapy. These tools have recently been validated in gene therapy models for continuous quantitative monitoring of the location, magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide imaging technologies as they have been used in imaging gene delivery and gene expression for gene therapy applications. The studios published to date lend support that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human gene therapy.

Deep-Learning-Based Molecular Imaging Biomarkers: Toward Data-Driven Theranostics

  • Choi, Hongyoon
    • 한국의학물리학회지:의학물리
    • /
    • 제30권2호
    • /
    • pp.39-48
    • /
    • 2019
  • Deep learning has been applied to various medical data. In particular, current deep learning models exhibit remarkable performance at specific tasks, sometimes offering higher accuracy than that of experts for discriminating specific diseases from medical images. The current status of deep learning applications to molecular imaging can be divided into a few subtypes in terms of their purposes: differential diagnostic classification, enhancement of image acquisition, and image-based quantification. As functional and pathophysiologic information is key to molecular imaging, this review will emphasize the need for accurate biomarker acquisition by deep learning in molecular imaging. Furthermore, this review addresses practical issues that include clinical validation, data distribution, labeling issues, and harmonization to achieve clinically feasible deep learning models. Eventually, deep learning will enhance the role of theranostics, which aims at precision targeting of pathophysiology by maximizing molecular imaging functional information.

Design and Implementation of Bioluminescence Signal Analysis Tool

  • Jeong, Hye-Jin;Lee, Byeong-Il;Hwang, Hae-Gil;Song, Soo-Min;Min, Jung-Joon;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제9권12호
    • /
    • pp.1580-1587
    • /
    • 2006
  • The term molecular imaging can be broadly defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Optical imaging that has highly reproducibility and repetition used in molecular imaging research. In the bioluminescence imaging, animals carrying the luciferase gene are imaged with a cooled CCD(Charge-Coupled Device) camera to pick up the small number of photons transmitted through tissues. Molecular imaging analysis will allow us to observe the incipience and progression of the disease. But hardware device for molecular imaging and software for molecular image analysis were dependent on imports. In this paper, we suggest image processing methods and designed software for bioluminescence signal analysis. And we demonstrated high correlation(r=0.99) between our software's photon counts and commercial software's photon counts. ROI function and processing functions were accomplished without error. This study have the importance of the development software for bioluminescence image processing and analysis. And this study built the foundations for creative development of analysis methods. We expected this study lead the development of image technology.

  • PDF

MR조영제와 분자영상 (MR Contrast Agents and Molecular Imaging)

  • 문우경
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.205-208
    • /
    • 2004
  • The two major classes of magnetic resonance (MR) contrast agents are paramagnetic contrast agents, usually based on chelates of gadolinium generating T1 positive signal enhancement, and super-paramagnetic contrast agents that use mono- or polycrystalline iron oxide to generate strong T2 negative contrast in MR images. These paramagnetic or super-paramagnetic complexes are used to develop new contrast agents that can target the specific molecular marker of the cells or tan be activated to report on the physiological status or metabolic activity of biological systems. In molecular imaging science, MR imaging has emerged as a leading technique because it provides high-resolution three-dimension maps of the living subject. The future of molecular MR imaging is promising as advancements in hardware, contrast agents, and image acquisition methods coalesce to bring high resolution in vivo imaging to the biochemical sciences and to patient care.

Positron emission tomography and magnetic resonance imaging

  • Yim, Min Su;Ryu, Eun Kyoung
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.3-8
    • /
    • 2016
  • Molecular imaging technologies have been used to provide a new pathway for therapies and diagnosis of human disease. Especially, imaging probes have been much development in the molecular imaging field. Combining imaging probes for positron emission tomography (PET) and magnetic resonance imaging (MRI) have suggested the potential of multiple methods in living body. This review discusses the cancer or lymph node-targeting probes that are suitable for PET/MRI based diagnosis.

분자영상 획득을 위한 핵의학 영상기기 (Nuclear Medicine Imaging Instrumentations for Molecular Imaging)

  • 정용현;송태용;최용
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.131-139
    • /
    • 2004
  • Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging.

Intratumoral distribution of 64Cu-ATSM and 18F-FDG in VX2tumor xenografted rabbit

  • Yoo, Ran Ji;Lee, Ji Woong;Lee, Kyo Chul;An, Gwang Il;Ko, In Ok;Chung, Wee Sup;Park, Ji Ae;Kim, Kyeong Min;Choi, Yang-Kyu;Kang, Joo Hyun;Lim, Sang Moo;Lee, Yong Jin
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.123-129
    • /
    • 2015
  • $^{64}Cu$-labeled diacetyl-bis($N^4$-methylthiosemicarbazone) is a promising agent for internal radiation therapy and imaging of hypoxic tissues. In the study, we confirmed hypoxia regions in VX2 tumor implanted rabbits with injection $^{64}Cu$-ATSM and $^{18}F$-FDG using positron emission tomography (PET)/computed tomography (CT). PET images with $^{18}F$-FDG and $^{64}Cu$-ATSM were obtained for 40 min by dynamic scan and additional delayed PET images of $^{64}Cu$-ATSM the acquired up to 48 hours. Correlation between intratumoral $O_2$ level and $^{64}Cu$-ATSM PET image was analyzed. $^{64}Cu$-ATSM and $^{18}F$-FDG were intravenously co-injected and the tumor was dissected and cut into slices for a dual-tracer autoradiographic analysis. In the PET imaging, $^{64}Cu$-ATSM in VX2 tumors displayed a specific uptake in hypoxic region for48 h. The uptake pattern of $^{64}Cu$-ATSM in VX2 tumor at 24 and 48 h did not match to the $^{18}F$-FDG. Through ROI analysis, in the early phase (dynamic scan), $^{18}F$-FDG has positive correlation with $^{64}Cu$-ATSM but late phase (24 and 48 h) of the $^{64}Cu$-ATSM showed negative correlation with $^{18}F$-FDG. High uptake of $^{64}Cu$-ATSM in hypoxic region was responded with significant decrease of oxygen pressure, which confirmed by $^{64}Cu$-ATSM PET imaging and autoradiographic analysis. In conclusion, $^{64}Cu$-ATSM can utilize for specific targeting of hypoxic region in tumor, and discrimination between necrotic- and viable hypoxic tissue.