References
- Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 2010;16:508-515. https://doi.org/10.1016/j.molmed.2010.08.003
- Margolis DJ, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular imaging techniques in body imaging. Radiology 2007;245:333-356.
- Long CM, Bulte JW. In vivo tracking of cellular therapeutics using magnetic resonance imaging. Expert Opin Biol Ther 2009;9: 293-306. https://doi.org/10.1517/14712590802715723
- Tapfer A, Bech M, Velroyen A, Meiser J, Mohr J, Walter M, Schulz J, Pauwels B, Bruyndonckx P, Liu X, Sasov A, Pfeiffer F. Experimental results from a preclinical X-ray phase-contrast CT scanner. Proc Natl Acad Sci USA 2012;109:15691-15696. https://doi.org/10.1073/pnas.1207503109
- Fahey FH. Dosimetry of Pediatric PET/CT. J Nucl Med 2009;50: 1483-1491.
- Balyasnikova S, Lofgren J, de Nijs R, Zamogilnaya Y, Hojgaard L, Fischer BM. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging 2012;2:458-474.
- Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X. PET/ MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 2008;49:1371-1379. https://doi.org/10.2967/jnumed.108.051243
- Prompruk K, Govender T, Zhang S, Xiong CD, Stolnik S. Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. Int J Pharm 2005;297:242-253. https://doi.org/10.1016/j.ijpharm.2005.02.025
- Sosnovik D, Weissleder R. Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res 2005;62: 83-115.
- Zielhuis SW, Seppenwoolde JH, Mateus VA, Bakker CJ, Krijger GC, Storm G, Zonnenberg BA, van het Schip AD, Koning GA, Nijsen JF. Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother Radiopharm 2006;21:520-527. https://doi.org/10.1089/cbr.2006.21.520
- Kim SM, Chae MK, Yim MS, Jeong IH, Cho J, Lee C, Ryu EK. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 2013;34:8114-8121. https://doi.org/10.1016/j.biomaterials.2013.07.078
- Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori 2003;89: 237-249.
- Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PS, Roberts PJ, Allan DC. Single-Mode Photonic Band Gap Guidance of Light in Air. Science 1999;285:1537-1539. https://doi.org/10.1126/science.285.5433.1537
- Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids 2005;135:117-129. https://doi.org/10.1016/j.chemphyslip.2005.02.003
- Zhang P, Li H, Chen D, Ni J, Kang Y, Wang S. Oleanolic acid induces apoptosis in human leukemia cells through caspase activation and poly(ADP-ribose) polymerase cleavage. Acta Biochim Biophys Sin (Shanghai) 2007;39:803-809. https://doi.org/10.1111/j.1745-7270.2007.00335.x
- Zhou R, Zhang Z, Zhao L, Jia C, Xu S, Mai Q, Lu M, Huang M, Wang L, Wang X, Jin D, Bai X. Inhibition of mTOR signaling by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells. J Orthop Res 2011;29:846-852. https://doi.org/10.1002/jor.21311
- Juan ME, Wenzel U, Ruiz-Gutierrez V, Daniel H, Planas JM. Olive fruit extracts inhibit proliferation and induce apoptosis in HT-29 human colon cancer cells. J Nutr 2006;136:2553-2557. https://doi.org/10.1093/jn/136.10.2553
- Yan SL, Huang CY, Wu ST, Yin MC. Oleanolic acid and ursolic acid induce apoptosis in four human liver cancer cell lines. Toxicol In Vitro 2010;24:842-848. https://doi.org/10.1016/j.tiv.2009.12.008
- Kim SM, Jeong IH, Yim MS, Chae MK, Kim HN, Kim DK, Kang CM, Choe YS, Lee C, Ryu EK. Characterization of oleanolic acid derivative for colon cancer targeting with positron emission tomography. J Drug Target 2013;22:191-199.
- Choi JS, Park JC, Nah H, Woo S, Oh J, Kim KM, Cheon GJ, Chang Y, Yoo J, Cheon J. A hybrid nanoparticle probe for dual- modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl 2008;47:6259-6262. https://doi.org/10.1002/anie.200801369
- Misselwitz B. MR contrast agents in lymph node imaging. Eur J Radiol 2006;58:375-382. https://doi.org/10.1016/j.ejrad.2005.12.044
- Muldoon LL, Varallyay P, Kraemer DF, Kiwic G, Pinkston K, Walker-Rosenfeld SL, Neuwelt EA. Trafficking of superparamagnetic iron oxide particles (Combidex) from brain to lymph nodes in the rat. Neuropathol Appl Neurobiol 2004;30:70-79. https://doi.org/10.1046/j.0305-1846.2003.00512.x
- Barrett T, Choyke PL, Kobayashi H. Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 2006;1:230-245. https://doi.org/10.1002/cmmi.116
- Luciani A, Itti E, Rahmouni A, Meignan M, Clement O. Lymph node imaging: basic principles. Eur J Radiol 2006;58:338-344. https://doi.org/10.1016/j.ejrad.2005.12.038
- Wallace AM, Hoh CK, Ellner SJ, Darrah DD, Schulteis G, Vera DR. Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping. Ann Surg Oncol 2007;14:913-921. https://doi.org/10.1245/s10434-006-9099-4
- Wunderbaldinger P. Problems and prospects of modern lymph node imaging. Eur J Radiol 2006;58:325-337. https://doi.org/10.1016/j.ejrad.2005.12.037
- Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11:2319-2331. https://doi.org/10.1007/s003300100908
- Jeong JM, Hong MK, Kim YJ, Lee J, Kang JH, Lee DS, Chung JK, Lee MC. Development of 99mTc-neomannosyl human serum albumin (99mTc-MSA) as a novel receptor binding agent for sentinel lymph node imaging. Nucl Med Commun 2004;25:1211-1217. https://doi.org/10.1097/00006231-200412000-00010
- Kim JS, Kim YH, Kim JH, Kang KW, Tae EL, Youn H, Kim D, Kim SK, Kwon JT, Cho MH, Lee YS, Jeong JM, Chung JK, Lee DS. Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation. Nanomedicine (Lond) 2012;7:219-229. https://doi.org/10.2217/nnm.11.94
- Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2007;2:23-39. https://doi.org/10.2217/17435889.2.1.23
- Sharma P, Brown S, Walter G, Santra S, Moudgil B. Nanoparticles for bioimaging. Adv Colloid Interface Sci 2006;123-126:471-485. https://doi.org/10.1016/j.cis.2006.05.026
- Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 2005;5:113-117. https://doi.org/10.1021/nl0482478
- Nakajima M, Takeda M, Kobayashi M, Suzuki S, Ohuchi N. Nano-sized fluorescent particles as new tracers for sentinel node detection: experimental model for decision of appropriate size and wavelength. Cancer Sci 2005;96:353-356. https://doi.org/10.1111/j.1349-7006.2005.00053.x
- Park KS, Tae J, Choi B, Kim YS, Moon C, Kim SH, Lee HS, Kim J, Kim J, Park J, Lee JH, Lee JE, Joh JW, Kim S. Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood-derived mesenchymal stem cells. Nanomedicine 2010;6:263-276.