DOI QR코드

DOI QR Code

Positron emission tomography and magnetic resonance imaging

  • Yim, Min Su (Protein structure research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Department of Bio-analytical Science, University of Science and Technology) ;
  • Ryu, Eun Kyoung (Protein structure research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Department of Bio-analytical Science, University of Science and Technology)
  • Received : 2016.03.28
  • Accepted : 2016.06.01
  • Published : 2016.06.30

Abstract

Molecular imaging technologies have been used to provide a new pathway for therapies and diagnosis of human disease. Especially, imaging probes have been much development in the molecular imaging field. Combining imaging probes for positron emission tomography (PET) and magnetic resonance imaging (MRI) have suggested the potential of multiple methods in living body. This review discusses the cancer or lymph node-targeting probes that are suitable for PET/MRI based diagnosis.

Keywords

References

  1. Sauter AW, Wehrl HF, Kolb A, Judenhofer MS, Pichler BJ. Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 2010;16:508-515. https://doi.org/10.1016/j.molmed.2010.08.003
  2. Margolis DJ, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular imaging techniques in body imaging. Radiology 2007;245:333-356.
  3. Long CM, Bulte JW. In vivo tracking of cellular therapeutics using magnetic resonance imaging. Expert Opin Biol Ther 2009;9: 293-306. https://doi.org/10.1517/14712590802715723
  4. Tapfer A, Bech M, Velroyen A, Meiser J, Mohr J, Walter M, Schulz J, Pauwels B, Bruyndonckx P, Liu X, Sasov A, Pfeiffer F. Experimental results from a preclinical X-ray phase-contrast CT scanner. Proc Natl Acad Sci USA 2012;109:15691-15696. https://doi.org/10.1073/pnas.1207503109
  5. Fahey FH. Dosimetry of Pediatric PET/CT. J Nucl Med 2009;50: 1483-1491.
  6. Balyasnikova S, Lofgren J, de Nijs R, Zamogilnaya Y, Hojgaard L, Fischer BM. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging 2012;2:458-474.
  7. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X. PET/ MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 2008;49:1371-1379. https://doi.org/10.2967/jnumed.108.051243
  8. Prompruk K, Govender T, Zhang S, Xiong CD, Stolnik S. Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. Int J Pharm 2005;297:242-253. https://doi.org/10.1016/j.ijpharm.2005.02.025
  9. Sosnovik D, Weissleder R. Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res 2005;62: 83-115.
  10. Zielhuis SW, Seppenwoolde JH, Mateus VA, Bakker CJ, Krijger GC, Storm G, Zonnenberg BA, van het Schip AD, Koning GA, Nijsen JF. Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother Radiopharm 2006;21:520-527. https://doi.org/10.1089/cbr.2006.21.520
  11. Kim SM, Chae MK, Yim MS, Jeong IH, Cho J, Lee C, Ryu EK. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 2013;34:8114-8121. https://doi.org/10.1016/j.biomaterials.2013.07.078
  12. Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori 2003;89: 237-249.
  13. Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PS, Roberts PJ, Allan DC. Single-Mode Photonic Band Gap Guidance of Light in Air. Science 1999;285:1537-1539. https://doi.org/10.1126/science.285.5433.1537
  14. Garbuzenko O, Barenholz Y, Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids 2005;135:117-129. https://doi.org/10.1016/j.chemphyslip.2005.02.003
  15. Zhang P, Li H, Chen D, Ni J, Kang Y, Wang S. Oleanolic acid induces apoptosis in human leukemia cells through caspase activation and poly(ADP-ribose) polymerase cleavage. Acta Biochim Biophys Sin (Shanghai) 2007;39:803-809. https://doi.org/10.1111/j.1745-7270.2007.00335.x
  16. Zhou R, Zhang Z, Zhao L, Jia C, Xu S, Mai Q, Lu M, Huang M, Wang L, Wang X, Jin D, Bai X. Inhibition of mTOR signaling by oleanolic acid contributes to its anti-tumor activity in osteosarcoma cells. J Orthop Res 2011;29:846-852. https://doi.org/10.1002/jor.21311
  17. Juan ME, Wenzel U, Ruiz-Gutierrez V, Daniel H, Planas JM. Olive fruit extracts inhibit proliferation and induce apoptosis in HT-29 human colon cancer cells. J Nutr 2006;136:2553-2557. https://doi.org/10.1093/jn/136.10.2553
  18. Yan SL, Huang CY, Wu ST, Yin MC. Oleanolic acid and ursolic acid induce apoptosis in four human liver cancer cell lines. Toxicol In Vitro 2010;24:842-848. https://doi.org/10.1016/j.tiv.2009.12.008
  19. Kim SM, Jeong IH, Yim MS, Chae MK, Kim HN, Kim DK, Kang CM, Choe YS, Lee C, Ryu EK. Characterization of oleanolic acid derivative for colon cancer targeting with positron emission tomography. J Drug Target 2013;22:191-199.
  20. Choi JS, Park JC, Nah H, Woo S, Oh J, Kim KM, Cheon GJ, Chang Y, Yoo J, Cheon J. A hybrid nanoparticle probe for dual- modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl 2008;47:6259-6262. https://doi.org/10.1002/anie.200801369
  21. Misselwitz B. MR contrast agents in lymph node imaging. Eur J Radiol 2006;58:375-382. https://doi.org/10.1016/j.ejrad.2005.12.044
  22. Muldoon LL, Varallyay P, Kraemer DF, Kiwic G, Pinkston K, Walker-Rosenfeld SL, Neuwelt EA. Trafficking of superparamagnetic iron oxide particles (Combidex) from brain to lymph nodes in the rat. Neuropathol Appl Neurobiol 2004;30:70-79. https://doi.org/10.1046/j.0305-1846.2003.00512.x
  23. Barrett T, Choyke PL, Kobayashi H. Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 2006;1:230-245. https://doi.org/10.1002/cmmi.116
  24. Luciani A, Itti E, Rahmouni A, Meignan M, Clement O. Lymph node imaging: basic principles. Eur J Radiol 2006;58:338-344. https://doi.org/10.1016/j.ejrad.2005.12.038
  25. Wallace AM, Hoh CK, Ellner SJ, Darrah DD, Schulteis G, Vera DR. Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping. Ann Surg Oncol 2007;14:913-921. https://doi.org/10.1245/s10434-006-9099-4
  26. Wunderbaldinger P. Problems and prospects of modern lymph node imaging. Eur J Radiol 2006;58:325-337. https://doi.org/10.1016/j.ejrad.2005.12.037
  27. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11:2319-2331. https://doi.org/10.1007/s003300100908
  28. Jeong JM, Hong MK, Kim YJ, Lee J, Kang JH, Lee DS, Chung JK, Lee MC. Development of 99mTc-neomannosyl human serum albumin (99mTc-MSA) as a novel receptor binding agent for sentinel lymph node imaging. Nucl Med Commun 2004;25:1211-1217. https://doi.org/10.1097/00006231-200412000-00010
  29. Kim JS, Kim YH, Kim JH, Kang KW, Tae EL, Youn H, Kim D, Kim SK, Kwon JT, Cho MH, Lee YS, Jeong JM, Chung JK, Lee DS. Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation. Nanomedicine (Lond) 2012;7:219-229. https://doi.org/10.2217/nnm.11.94
  30. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2007;2:23-39. https://doi.org/10.2217/17435889.2.1.23
  31. Sharma P, Brown S, Walter G, Santra S, Moudgil B. Nanoparticles for bioimaging. Adv Colloid Interface Sci 2006;123-126:471-485. https://doi.org/10.1016/j.cis.2006.05.026
  32. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 2005;5:113-117. https://doi.org/10.1021/nl0482478
  33. Nakajima M, Takeda M, Kobayashi M, Suzuki S, Ohuchi N. Nano-sized fluorescent particles as new tracers for sentinel node detection: experimental model for decision of appropriate size and wavelength. Cancer Sci 2005;96:353-356. https://doi.org/10.1111/j.1349-7006.2005.00053.x
  34. Park KS, Tae J, Choi B, Kim YS, Moon C, Kim SH, Lee HS, Kim J, Kim J, Park J, Lee JH, Lee JE, Joh JW, Kim S. Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood-derived mesenchymal stem cells. Nanomedicine 2010;6:263-276.