• 제목/요약/키워드: Molecular imaging

검색결과 820건 처리시간 0.026초

부인암에서 FDG-PET의 역할 (FDG-PET in Gynecologic Cancer)

  • 유상영
    • 대한핵의학회지
    • /
    • 제36권1호
    • /
    • pp.46-52
    • /
    • 2002
  • Whole-body positron emission tomography (PET) imaging with 18-F deoxyglucose (FDG) is a molecular imaging modality that detects metabolic alteration in tumor cells. In various human cancers, FDG-PET shows a potential clinical benefit in screening, tumor characterization, staging, therapeutic follow-up and detecting recurrence. In gynecologic cancers, FDG-PET is also known to be effective in characterization of adnexal masses, detection of recurrence, and lymph node invasion. This review discusses the clinical feasibility and future clinical application of this imaging modality in patients with cervical cancer, ovarian cancer, and other gynecologic cancers.

심근 SPECT를 이용한 관상동맥질환의 진단 (Diagnosis of Coronary Artery Disease Using Myocardial Perfusion SPECT)

  • 원경숙;김해원
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권3호
    • /
    • pp.196-202
    • /
    • 2009
  • Myocardial perfusion scintigraphy is currently by far the most commonly performed cardiac nuclear study, constituting approximately one third of all nuclear medicine procedure. It plays an important role in the diagnosis, prognosis, risk assessment and management of heart disease. Aim of this review is to describe recent evolution of myocardial perfusion imaging on the focus of diagnosis of coronary artery disease. In addition, current status of other imaging modalities will be reviewed.

Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • 제14권3호
    • /
    • pp.93-105
    • /
    • 2002
  • Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.

간암 동물 모델에서 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabinofuranosyl-5-[$^{124}I$iodo-uracil ($[^{124}I]FIAU$) 소동물 PET 영상 연구 (Small Animal PET Imaging with [$^{124}I$]FIAU for Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression in a Hepatoma Model)

  • 채민정;이태섭;김준엽;우광선;정위섭;전권수;김재홍;이지섭;류진숙;천기정;최창운;임상무
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권3호
    • /
    • pp.235-245
    • /
    • 2008
  • 목적: 간암은 치명적인 질환으로 유전자 치료가 기존 치료의 대체적 치료로 기대되고 있으며, 이러한 치료법의 발달과 함께 유전자의 발현을 평가할 수 있는 보고 유전자 시스템의 필요하다. 그 중 HSV1-tk 유전자는 보고 유전자로서 필요한 조건을 두루 만족시키고 있을 뿐만 아니라 별도의 치료유전자를 따로 이입할 필요가 없다는 장점을 가지고 있어 가장 많이 사용되는 방법이다. 이 연구는 간암의 유전자 치료를 위해 간암 동물 모델에서 유전자로 HSV1-tk를 사용하고 보고 기질로 방사성 요오드 표지 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabinofuranosyl-5-iodouracil (FIAU)를 사용하여 소동물 양전자 방출영상(positron emission tomography, PET)을 얻어 비침습적 생체 유전자 발현 영상의 가능성을 확인하고 자 하였다. 대상 및 방법: HSV1-tk 보고 유전자 이입 간암세포주인 MCA-tk와 MCA 세포주를 이용하여 in vitro 상에서의 [$^{125}I$]FIAU의 섭취실험과 섭취량과 발현량의 상관성평가를 위해 세포수 백분율에 따른 섭취실험을 실시하였다. 피하 간암 동물모델을 이용하여 [$^{125}I$]FIAU의 생체분포를 평가하였으며 [$^{125}I$]FIAU를 이용하여 소동물 PET을 통한 생체영상을 분석하였다. 결과: HSV1-tk 유전자가 이입된 MCA-tk 세포에서는 특이적인 동위원소의 집적이 발생하였으며 대조군인 MCA에서는 거의 집적이 이루어지지 않았다. 섭취 후 480 분에서 두 세포주의 섭취비는 15 배로 나타났다. MCA-tk 세포주의 백분율이 증가함에 따라 [$^{125}I$]FIAU의 섭취량도 직선적 상관관계($R^2=0.9644$)에 따라 증가하여 기질의 섭취량이 유전자 발현량을 잘 반영하고 있음이 확인되었다. 피하 종양 동물모델의 생체분포 결과 [$^{125}I$]FIAU는 초기에 신장으로 빠르게 배출되며 1 시간 이후 생체내 deiodinase에 의하여 분해되어 위와 갑상선의 섭취가 증가된 값을 보였다. MCA-tk 종양 대 혈액 비와 MCA-tk 종양 대 근육 비는 투여 후 24 시간 사이에 최대 641의 값을 나타내었다. 또한 HSV1-tk 유전자가 발현하지 않은 MCA종양에 비하여 MCA-tk 종양은 192.7 배 높은 섭취를 보여 [$^{125}I$]FIAU의 섭취는 HSV1-tk 유전자 발현에 특이적임을 확인하였다. MCA-tk 종양 대 간의 집적의 경우에도 초기 1시간에 13.8 배, 4 시간에 66.8 배, 24 시간에 혈액 비와 비슷한 정도의 588.3배 이상의 대조도를 보여 주었다. [$^{124}I$]FIAU를 보고 기질로 사용한 소동물 PET 생체영상에서 대조군인 MCA 종양과 보고 유전자가 이입된 MCA-tk 종양에의 집적이 차이가 매우 큰 대조도를 보여주었으며 생체분포 결과와 일치하는 양상을 나타내었다. 결론: $^{125}I$-FIAU가 세포 섭취율 시험과 생체 분포에서 MCA-tk 종양에 높은 집적을 나타내었고 $^{124}I$-FIAU를 이용한 소동물 PET 영상에서 MCA-tk 종양이 표적장기인 간이나 MCA 종양에 비하여 매우 높은 대조도를 나타냈다. 향후, 간암의 유전자 치료에서 FIAU은 HSV1-tk를 보고 유전자로 사용할 때 적절한 기질로서 비침습적으로 핵의학 영상을 이용한 유전자 발현의 평가를 가능하게 할 수 있을 것으로 기대된다.

Adult stem cell lineage tracing and deep tissue imaging

  • Fink, Juergen;Andersson-Rolf, Amanda;Koo, Bon-Kyoung
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.655-667
    • /
    • 2015
  • Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.

뇌 신경물질 운반체 영상용 방사성의약품 (Radiopharmaceuticals for Neurotransmitter Imaging)

  • 오승준
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.118-131
    • /
    • 2007
  • Neurotransmitter imaging with radiopharmaceuticals plays major role for understanding of neurological and psychiatric disorders such as Parkinson's disease and depression. Radiopharmaceuticals for neurotransmitter imaging can be divided to dopamine transporter imaging radiopharmaceuticals and serotonin trnasporter imaging radiopharmaceuticals. Many kinds of new dopamine transporter imaging radiopharmcaeuticals has a tropane ring and they showed different biological properties according to the substituted functional group on tropane ring. After the first clinical trials with $[^{123}I]{\beta}-CIT$, alkyl chain substituent introduced to tropane ring amine to decrease time for imaging acquisition and to increase selectivity. From these results, $[^{123}I]PE2I$, [18F]FE-CNT, $[^{123}I]FP-CIT$ and $[^{18}F]FP-CIT$ were developed and they showed high uptake on the dopamine transporter rich regions and fast peak uptake equilibrium time within 4 hours after injection. $[^{11}C]McN$ 5652 was developed for serotonin trnasporter imaging but this compound showed slow kinetics and high background radioactivity. To overcome these problems, new diarylsulfide backbone derivatives such as ADAM, ODAM, AFM, and DASB were developed. In these candidates, $[^{11}C]AFM$ and $[^{11}C]DASB$ showed high binding affinity to serotonin transporter and fast in vivo kinetics. This paper gives an overview of current status on dopamine and serotonin transporter imaging radiopharmaceuitcals and the development of new lead compounds as potential radiopharmaceuticals by medicinal chemistry.

Radiolabeling of nanoparticle for enhanced molecular imaging

  • Kim, Ho Young;Lee, Yun-Sang;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.103-112
    • /
    • 2017
  • The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.

Induced neural stem cells from human patient-derived fibroblasts attenuate neurodegeneration in Niemann-Pick type C mice

  • Hong, Saetbyul;Lee, Seung-Eun;Kang, Insung;Yang, Jehoon;Kim, Hunnyun;Kim, Jeyun;Kang, Kyung-Sun
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Background: Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, which leads to the abnormal accumulation of unesterified cholesterol and glycolipids in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of induced neural stem cells (iNSCs), converted from fibroblasts using specific transcription factors, to repair degenerated lesions has been considered a novel therapy. Objectives: The therapeutic effects on NPC by human iNSCs generated by our research group have not yet been studied in vivo; in this study, we investigate those effects. Methods: We used an NPC mouse model to efficiently evaluate the therapeutic effect of iNSCs, because neurodegeneration progress is rapid in NPC. In addition, application of human iNSCs from NPC patient-derived fibroblasts in an NPC model in vivo can give insight into the clinical usefulness of iNSC treatment. The iNSCs, generated from NPC patientderived fibroblasts using the SOX2 and HMGA2 reprogramming factors, were transplanted by intracerebral injection into NPC mice. Results: Transplantation of iNSCs showed positive results in survival and body weight change in vivo. Additionally, iNSC-treated mice showed improved learning and memory in behavior test results. Furthermore, through magnetic resonance imaging and histopathological assessments, we observed delayed neurodegeneration in NPC mouse brains. Conclusions: iNSCs converted from patient-derived fibroblasts can become another choice of treatment for neurodegenerative diseases such as NPC.

Sphingosine 1-phosphate induces vesicular endothelial growth factor expression in endothelial cells

  • Heo, Kyun;Park, Kyung-A;Kim, Yun-Hee;Kim, Sun-Hee;Oh, Yong-Seok;Kim, In-Hoo;Ryu, Sung-Ho;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제42권10호
    • /
    • pp.685-690
    • /
    • 2009
  • Angiogenesis is essential for tumor growth and vascular endothelial cell growth factor (VEGF) plays a key role in this process. Conversely, sphingosine 1-phosphate (S1P) is a biologically active sphingolipid known to play a key role in cancer progression by regulating endothelial cell proliferation and migration. In this study, the authors found that S1P increases the level of VEGF mRNA in human umbilical vein endothelial cells (HUVECs) and immortalized HUVECs (iHUVECs). Additionally, S1P was found to increase VEGF promoter activity in MS-1 mouse pancreatic islet endothelial cells. Furthermore, a pharmacological inhibitory study revealed that $G_{\alpha i/o}$-mediated phospholipase C, Akt, Erk, and p38 MAPK signaling are involved in this S1P-induced expression of VEGF. A component of AP1 transcription factor is important for S1P-induced VEGF expression. Taken together, these findings suggest that S1P enhances endothelial cell proliferation and migrat ion by upregulating the expression of VEGF mRNA.