• Title/Summary/Keyword: Molecular identification

Search Result 1,950, Processing Time 0.055 seconds

Molecular Characterization of Protease Producing Idiomarina Species Isolated from Peruvian Saline Environments

  • Flores-Fernandez, Carol N.;Chavez-Hidalgo, Elizabeth;Santos, Marco;Zavaleta, Amparo I.;Arahal, David R.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.401-411
    • /
    • 2019
  • All Idiomarina species are isolated from saline environments; microorganisms in such extreme habitats develop metabolic adaptations and can produce compounds such as proteases with an industrial potential. ARDRA and 16S rRNA gene sequencing are established methods for performing phylogenetic analysis and taxonomic identification. However, 16S-23S ITS is more variable than the 16S rRNA gene within a genus, and is therefore, used as a marker to achieve a more precise identification. In this study, ten protease producing Idiomarina strains isolated from the Peruvian salterns were characterized using biochemical and molecular methods to determine their bacterial diversity and industrial potential. In addition, comparison between the length and nucleotide sequences of a 16S-23S ITS region allowed us to assess the inter and intraspecies variability. Based on the 16S rRNA gene, two species of Idiomarina were identified (I. zobellii and I. fontislapidosi). However, biochemical tests revealed that there were differences between the strains of the same species. Moreover, it was found that the ITS contains two tRNA genes, $tRNA^{Ile(GAT)}$ and $tRNA^{Ala(TGC)}$, which are separated by an ISR of a variable size between strains of I. zobellii. In one strain of I. zobellii (PM21), we found nonconserved nucleotides that were previously not reported in the $tRNA^{Ala}$ gene sequences of Idiomarina spp. Thus, based on the biochemical and molecular characteristics, we can conclude that protease producing Idiomarina strains have industrial potential; only two I. zobellii strains (PM48 and PM72) exhibited the same properties. The differences between the other strains could be explained by the presence of subspecies.

The Use of AFLP Markers for Cultivar Identification in Hydrangea macrophylla

  • Lee, Jae Ho;Hyun, Jung Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.125-130
    • /
    • 2007
  • The principal morphological characters used for identification of hydrangea cultivars are often dependent on agroclimatic conditions. Furthermore, information on the selection or the genetic background of the hydrangea breeding is so rare that a molecular marker system for cultivar identification is needed. Amplified fragment length polymorphism (AFLP) markers were employed for fingerprinting Hydrangea macrophylla cultivars and candidate cultivars of H. macrophylla selected in Korea. One AFLP primer combination was sufficient to distinguish 17 H. macrophylla cultivars and 4 candidate cultivars. The profile of 19 loci that can minimize the error of amplification peak detection was constructed. AFLP markers were efficient for identification, estimation of genetic distances between cultivars, and cultivar discrimination. Based on the observed AFLP markers, genetic relationship was reconstructed by the UPGMA method. Seventeen H. macrophylla cultivars and H. macrophylla for. normalis formed a major cluster, and candidate cultivars selected in Korea formed another cluster.

Species and Sex Identification of the Korean Goral (Nemorhaedus caudatus) by Molecular Analysis of Non-invasive Samples

  • Kim, Baek Jun;Lee, Yun-Sun;An, Jung-hwa;Park, Han-Chan;Okumura, Hideo;Lee, Hang;Min, Mi-Sook
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.314-318
    • /
    • 2008
  • Korean long-tailed goral (Nemorhaedus caudatus) is one of the most endangered species in South Korea. However, detailed species distribution and sex ratio data on the elusive goral are still lacking due to difficulty of identification of the species and sex in the field. The primary aim of this study was to develop an economical PCR-RFLP method to identify species using invasive or non-invasive samples from five Korean ungulates: goral (N. caudatus), roe deer (Capreolus pygargus), feral goat (Capra hircus), water deer (Hydropotes inermis) and musk deer (Moschus moschiferus). The secondary aim was to find more efficient molecular sexing techniques that may be applied to invasive or non-invasive samples of ungulate species. We successfully utilized PCR-RFLP of partial mitochondrial cytochrome b gene (376 bp) for species identification, and sex-specific amplification of ZFX/Y and AMELX/Y genes for sexing. Three species (goral, goat and water deer) showed distinctive band patterns by using three restriction enzymes (Xbal, Stul or Sspl). Three different sexing primer sets (LGL331/335 for ZFX/Y gene; SE47/48 or SE47/53 for AMELX/Y gene) produced sex-specific band patterns in goral, goat and roe deer. Our results suggest that the molecular analyses of non-invasive samples might provide us with potential tools for the further genetic and ecological study of Korean goral and related species.

Comparison of the Three Molecular Diagnostic Assays for Molecular Identification of Mycobacterium tuberculosis and Nontuberculous Mycobacteria Species in Sputum Samples

  • Bae, Jinyoung;Park, Sung-Bae;Kim, Ji-Hoi;Kang, Mi Ran;Lee, Kyung Eun;Kim, Sunghyun;Jin, Hyunwoo
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.170-178
    • /
    • 2020
  • Mycobacterium tuberculosis (MTB) continues to be one of the main causative agents of tuberculosis (TB); moreover, the incidence of nontuberculous mycobacteria (NTM) infections has been rising gradually in both immunocompromised and immunocompetent patients. Precise and rapid detection and identification of MTB and NTM in respiratory specimens are thus important for MTB infection control. Molecular diagnostic methods based on the nucleic acid amplification test (NAAT) are known to be rapid, sensitive, and specific compared to the conventional acid-fast bacilli (AFB) smear and mycobacterial culture methods. In the present study, the clinical performances of three commercial molecular diagnostic assays, namely TB/NTM PCR (Biocore), MolecuTech Real MTB-ID® (YD Diagnostics), and REBA Myco-ID® (YD Diagnostics), were evaluated with a total of 92 respiratory specimens (22 AFB smear positives and 67 AFB smear negatives). The sensitivity and specificity of TB/NTM PCR were 100% and 75.81%, respectively. The corresponding values of MolecuTech Real MTB-ID® and REBA Myco-ID® were 56.52% and 90.32%, and 56.52% and 82.26%, respectively. TB/NTM PCR showed the highest sensitivity; however, the concordant rate was 10% compared with sequence analysis. Although MolecuTech Real MTB-ID® showed lower sensitivity, its specificity was the highest among the three methods. REBA Myco-ID® allowed accurate classification of NTM species; therefore, it was the most specific diagnostic method. Of the three PCR-based methods, MolecuTech Real MTB-ID® showed the best performance. This method is expected to enable rapid and accurate identification of MTB and NTM.

Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins

  • Wang, Chaoming;Liu, Juan;Deng, Jianqiang;Wang, Jiazhen;Weng, Weizhao;Chu, Hongxia;Meng, Qingguo
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.14-23
    • /
    • 2020
  • Ginseng has been used as a popular herbal medicine in East Asia for at least two millennia. However, 20(R)-ginseng saponins, one class of important rare ginsenosides, are rare in natural products. 20(R)-ginseng saponins are generally prepared by chemical epimerization and microbial transformation from 20(S)-isomers. The C20 configuration of 20(R)-ginseng saponins are usually determined by 13C NMR and X-ray single-crystal diffraction. 20(R)-ginseng saponins have antitumor, antioxidative, antifatigue, neuroprotective, and osteoclastogenesis inhibitory effects, among others. Owing to the chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. In this study, the discovery, identification, chemical epimerization, microbial transformation, pharmacological activities, and metabolism of 20(R)-ginseng saponins are summarized.

Characterization and Pathogenicity of Lasiodiplodia theobromae Causing Black Root Rot and Identification of Novel Sources of Resistance in Mulberry Collections

  • Gnanesh, Belaghihalli N.;Arunakumar, Gondi S.;Tejaswi, Avuthu;Supriya, M.;Manojkumar, Haniyambadi B.;Devi, Suvala Shalini
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.272-286
    • /
    • 2022
  • Black root rot (BRR) caused by Lasiodiplodia theobromae is an alarming disease of mulberry that causes tremendous economic losses to sericulture farmers in India and China. Successful control of this disease can be attained by screening germplasm and identifying resistant sources. Seventy four diseased root samples were collected from farmer's fields belonging to four major mulberry growing states of South India. Based on morpho-cultural and scanning electron microscopy studies, 57 fungal isolates were characterized and identified as L. theobromae. Phylogenetic analysis of concatenated internal transcribed spacer and β-tubulin sequences revealed variation of the representative 20 isolates of L. theobromae. Following the root dip method of inoculation, pathogenicity studies on susceptible mulberry genotypes (Victory-1 and Thailand male) recognized the virulent isolate MRR-142. Accordingly, MRR-142 isolate was used to evaluate resistance on a set of 45 diverse mulberry accessions. In the repeated experiments, the mulberry accession ME-0168 which is an Indonesian origin belonging to Morus latifolia was found to be highly resistant consistently against BRR. Eight accessions (G2, ME-0006, ME-0011, ME-0093, MI-0006, MI-0291, MI-0489, and MI-0501) were found to be resistant. These promising resistant resources may be exploited in mulberry breeding for developing BRR resistant varieties and to develop mapping populations which successively helps in the identification of molecular markers associated with BRR.