Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.01.2022.0005

Characterization and Pathogenicity of Lasiodiplodia theobromae Causing Black Root Rot and Identification of Novel Sources of Resistance in Mulberry Collections  

Gnanesh, Belaghihalli N. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute)
Arunakumar, Gondi S. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute)
Tejaswi, Avuthu (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute)
Supriya, M. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute)
Manojkumar, Haniyambadi B. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute)
Devi, Suvala Shalini (Department of Microbiology, Bhavan's Vivekananda College of Science, Humanities and Commerce)
Publication Information
The Plant Pathology Journal / v.38, no.4, 2022 , pp. 272-286 More about this Journal
Abstract
Black root rot (BRR) caused by Lasiodiplodia theobromae is an alarming disease of mulberry that causes tremendous economic losses to sericulture farmers in India and China. Successful control of this disease can be attained by screening germplasm and identifying resistant sources. Seventy four diseased root samples were collected from farmer's fields belonging to four major mulberry growing states of South India. Based on morpho-cultural and scanning electron microscopy studies, 57 fungal isolates were characterized and identified as L. theobromae. Phylogenetic analysis of concatenated internal transcribed spacer and β-tubulin sequences revealed variation of the representative 20 isolates of L. theobromae. Following the root dip method of inoculation, pathogenicity studies on susceptible mulberry genotypes (Victory-1 and Thailand male) recognized the virulent isolate MRR-142. Accordingly, MRR-142 isolate was used to evaluate resistance on a set of 45 diverse mulberry accessions. In the repeated experiments, the mulberry accession ME-0168 which is an Indonesian origin belonging to Morus latifolia was found to be highly resistant consistently against BRR. Eight accessions (G2, ME-0006, ME-0011, ME-0093, MI-0006, MI-0291, MI-0489, and MI-0501) were found to be resistant. These promising resistant resources may be exploited in mulberry breeding for developing BRR resistant varieties and to develop mapping populations which successively helps in the identification of molecular markers associated with BRR.
Keywords
black root rot; Lasiodiplodia theobromae; mulberry; pathogenicity; resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bautista-Cruz, M. A., Almaguer-Vargas, G., Leyva-Mir, S. G., Colinas-Leon, M. T., Correia, K. C., Camacho-Tapia, M., Robles-Yerena, L., Michereff, S. J. and Tovar-Pedraza, J. M. 2019. Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with cankers and dieback symptoms of Persian lime in Mexico. Plant Dis. 103:1156-1165.   DOI
2 Bozzola, J. J. and Russell, L. D. 1992. Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston, MA, USA. 670 pp.
3 Central Silk Board. 2020. Annual report 2019-2020, English version, Central Silk Board, Bangalore. URL http://csb.gov.in/publications/annual-report/ [16 March 2022].
4 Chattopadhyay, S., Ali, K. A., Doss, S. G., Das, N. K., Aggarwal, R. K., Bandopadhyay, T. K., Sarkar, A. and Bajpai, A. K. 2010. Evaluation of mulberry germplasm for resistance to powdery mildew in the field and greenhouse. J. Gen. Plant Pathol. 76:87-93.   DOI
5 Chowdary, N. B. 2006. Studies on root rot disease of mulberry (Morus spp.) and its management with special reference to the antagonistic microbes. Ph.D. thesis. The University of Mysore, Mysore, India.
6 Munirah, M. S., Azmi, A. R., Yong, S. Y. C. and Nur Ain Izzati, M. Z. 2017. Characterization of Lasiodiplodia theobromae and L. pseudotheobromae causing fruit rot on pre-harvest mango in Malaysia. Plant Pathol. Q. 7:202-213.
7 Muniz, C. R., Freire, F. C. O., Viana, F. M. P., Cardoso, J. E., Cooke, P., Wood, D. and Guedes, M. I. F. 2011. Colonization of cashew plants by Lasiodiplodia theobromae: microscopical features. Micron 42:419-428.   DOI
8 Naik, V. N., Sharma, D. D. and Yadav, B. R. 2010. Screening of mulberry varieties/genotypes against root disease complex. Indian J. Nematol. 40:240-242.
9 Nam, M. H., Park, M. S., Kim, H. S., Kim, T. I., Lee, E. M., Park, J. D. and Kim, H. G. 2016. First report of dieback caused by Lasiodiplodia theobromae in strawberry plants in Korea. Mycobiology 44:319-324.   DOI
10 de Silva., N. I., Phillips, A. J. L., Liu, J.-K., Lumyong, S. and Hyde, K. D. 2019. Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Sci. Rep. 9:14355.   DOI
11 Nelson, E. B. 2004. Biological control of oomycetes and fungal pathogens. In: Encyclopedia of plant and crop science, ed. by R. M. Goodman, pp. 137-140. Marcel Dekker, Inc., New York, USA.
12 Pandey, A. K., Yee, M., Win, M. M., Lwin, H. M. M., Adapala, G., Rathore, A., Sheu, Z.-M. and Nair, R. M. 2021. Identification of new sources of resistance to dry root rot caused by Macrophomina phaseolina isolates from India and Myanmar in a mung bean mini-core collection. Crop Prot. 143:105569.   DOI
13 Pappachan, A., Rahul, K., Iren, L. and Sivaprasad, V. 2020. Molecular identification of fungi associated with mulberry root rot disease in Eastern and North Eastern India. J. Crop Weed. 16:180-185.   DOI
14 Pecenka, J., Tekielska, D. A., Kocanova, M., Penazova, E., Berraf-Tebbal, A. and Eichmeier, A. 2021. First report of Lasiodiplodia theobromae causing decline of blueberry (Vaccinium corymbosum L.) in the Czech Republic. Plant Dis. 105:215.
15 Datta, R. K. 2000. Mulberry cultivation and utilization in India. URL http://www.fao.org/DOCREP/005/X9895E/ x9895e04.htm#TopOfPage [16 March 2022].
16 Leroch, M., Kretschmer, M. and Hahn, M. 2011. Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J. Phytopathol. 159:63-65.   DOI
17 Alves, A., Crous, P. W., Correia, A. and Phillips, A. J. L. 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 28:1-13.
18 Arunakumar, G. S., Gnanesh, B. N., Manojkumar, H. B., Doss, S. G., Mogili, T., Sivaprasad, V. and Tewary, P. 2021. Genetic diversity, identification, and utilization of novel genetic resources for resistance to Meloidogyne incognita in mulberry (Morus spp.). Plant Dis. 105:2919-2928.   DOI
19 Arunakumar, G. S., Revanna, S., Kumar, V., Yadav, V. K. and Sivaprasad, V. 2018. Studies on scanning electron microscopy and fungal association with root knot nematode in major mulberry growing areas of Southern Karnataka. J. Entomol. Zool. Stud. 6:511-518.
20 Vijayan, K., Tikader, A., Zhao, W. G., Nair, C. V., Ercisli, S. and Tsou, C. H. 2011. Morus. In: Wild crop relatives: genomic and breeding resources, tropical and subtropical fruits, ed. by C. Kole, pp. 75-95. Springer-Verlag, Berlin/Heidelberg, Germany.
21 Maji, M. D. 2011. Genetic variability of mulberry (Morus spp.) germplasm against powdery mildew (Phyllactinia corylea) and identification of high resistance genotypes. Arch. Phytopathol. Plant Prot. 44:513-519.   DOI
22 Liang, L., Li, H., Zhou, L. and Chen, F. 2019. Lasiodiplodia pseudotheobromae causes stem canker of Chinese hackberry in China. J. For. Res. 31:2571-2580.   DOI
23 Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330.   DOI
24 Gnanesh, B. N., Tejaswi, A., Arunakumar, G. S., Supriya, M., Manojkumar, H. B. and Tewary, P. 2021. Molecular phylogeny, identification and pathogenicity of Rhizopus oryzae associated with root rot of mulberry in India. J. Appl. Microbiol. 131:360-374.   DOI
25 Joty, F. A., Hasan, M. M., Khatun, R., Billah, M. M., Miah, M. M., Mahmud, S., Reza, M. A. and Ferdousi, Z. 2019. Evaluation of antibacterial and antioxidant activity of three plant species from Morus genus. Int. J. Biosci. 14:183-189.
26 Kamil, F. H., Saeed, E. E., El Tarabily, K. A. and AbuQamar, S. F. 2018. Biological control of mango dieback disease caused by Lasiodiplodia theobromae using streptomycete and nonstreptomycete actinobacteria in the United Arab Emirates. Front. Microbiol. 9:829.   DOI
27 Kumar, S., Stecher, G., Li, M., Knyaz C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549.   DOI
28 Latha, P., Prakasam, V., Jonathan, E. I., Samiyappan, R. and Natarajan, C. 2013. Effect of culture media and environmental factors on mycelial growth and pycnidial production of Lasiodiplodia theobromae in physic nut (Jatropha curcas). J. Environ. Biol. 34:683-687.
29 Radhakrishnan, N. V., Ramabadran, R. and Jayaraj, J. 1995. Botryodiplodia root rot: a new disease of mulberry. Indian Phytopathol. 48:490-492.
30 Pinto, M. V., HS, P., MS, R., R, T. and Naik, V. G. 2018. Association mapping of quantitative resistance to charcoal root rot in mulberry germplasm. PLoS ONE 13:e0200099.   DOI
31 Rajeswari, P. and Angappan, K. 2018. Prevalence of mulberry root rot disease in Tamil Nadu. Int. J. Chem. Stud. 6:1573-1575.
32 Sowmya, P., Naik, V. N., Sivaprasad, V. and Naik, V. G. 2018. Characterization and correlation of pathogenicity of Botryodiplodia theobromae isolates, the causal agent of black root rot of mulberry (Morus spp.). Arch. Phytopathol. Plant Prot. 51:1022-1038.   DOI
33 Oliveira, L. S. S., Pimenta, L. V. A., Guimaraes, L. M. S., de Souza, P. V. D., Bhering, L. L. and Alfenas, A. C. 2021. Resistance of kiwifruit cultivars to ceratocystis wilt: an approach considering the genetic diversity and variation in aggressiveness of the pathogen. Plant Pathol. 70:349-357.   DOI
34 Rosado, A. W. C., Machado, A. R., Freire, F. D. C. O. and Pereira, O. L. 2016. Phylogeny, identification, and pathogenicity of Lasiodiplodia associated with postharvest stem-end rot of coconut in Brazil. Plant Dis. 100:561-568.   DOI
35 Saeed, E. E., Sham, A., AbuZarqa, A., Al Shurafa, K. A., Al Naqbi, T. S., Iratni, R., El-Tarabily, K. and AbuQamar, S. F. 2017. Detection and management of mango dieback disease in the United Arab Emirates. Int. J. Mol. Sci. 18:2086.   DOI
36 Salvatore, M. M., Andolfi, A. and Nicoletti, R. 2020. The thin line between pathogenicity and endophytism: the case of Lasiodiplodia theobromae. Agriculture 10:488.   DOI
37 Sharma, D. D., Naik, V. N., Chowdary, N. B. and Mala, V. R. 2003. Soil borne diseases of mulberry and their management. Int. J. Ind. Entomol. 7:93-106.
38 Slippers, B., Boissin, E., Phillips, A. J. L., Groenewald, J. Z., Lombard, L., Wingfield, M. J., Postma, A., Burgess, T. and Crous, P. W. 2013. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud. Mycol. 76:31-49.   DOI
39 Yoshida, S., Murakami, R., Watanabe, T. and Koyama, A. 2001. Rhizopus rot of mulberry-grafted saplings caused by Rhizopus oryzae. J. Gen. Plant Pathol. 67:291-293.   DOI
40 Ahmed, A. S., Perez-Sanchez, C., Egea, C. and Candela, M. E. 1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepper plants. Plant Pathol. 48:58-65.   DOI
41 Sukumar, J. and Padma, S. D. 1999. Diseases of mulberry in India: research progress and priorities. In: Advances in mulberry sericulture, eds. by M. C. Devaiah, K. C. Narayanaswamy and V. G. Maribashetty, pp. 152-186. C. V. G. Publications, Bangalore, India.
42 Tikader, A. and Dandin, S. B. 2007. Pre-breeding efforts to utilize two wild Morus species. Curr. Sci. 92:1729-1733.
43 Xie, H. H., Wei, J. G., Liu, F., Pan, X. H. and Yang, X. B. 2014. First report of mulberry root rot caused by Lasiodiplodia theobromae in China. Plant Dis. 98:1581.
44 Tovar-Pedraza, J. M., Mora-Aguilera, J. A., Nava-Diaz, C., TelizOrtiz, D., Valdovinos-Ponce, G., Villegas-Monter, A. and Hernandez-Morales, J. 2012. Identification, pathogenicity, and histopathology of Lasiodiplodia theobromae on mamey sapote grafts in Guerrero, Mexico. Agrociencia 46:147-161.
45 White, T., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols, a guide to methods and applications, eds. M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.
46 Xie, H. H., Huang, F. Y., Lan, X., Zhang, X. L., Wang, H. N., Lv, H. and Zhang, X. 2016. Antifungal effects of sisal leaf juice on Lasiodiplodia theobromae, the causal agent of mulberry root rot. Afr. J. Biotechnol. 15:165-171.   DOI
47 Banerjee, R., Maji, M. D., Ghosh, P. and Sarkar, A. 2009. Genetic analysis of disease resistance against Xanthomonas campestris pv. mori in mulberry (Morus spp.) and identification of germplasm with high resistance. Arch. Phytopathol. Plant Prot. 42:291-297.   DOI
48 Narayanan, P., Vanitha, S., Rajalakshmi, J., Parthasarathy, S., Arunkumar, K., Nagendran, K. and Karthikeyan, G. 2015. Efficacy of bio-control agents and fungicides in management of mulberry wilt caused by Fusarium solani. J. Biol. Control 29:107-114.   DOI
49 Chen, J., Zhu, Z., Fu, Y., Cheng, J., Xie, J. and Lin, Y. 2021. Identification of Lasiodiplodia pseudotheobromae causing fruit rot of citrus in China. Plants 10:202.   DOI