DOI QR코드

DOI QR Code

Characterization and Pathogenicity of Lasiodiplodia theobromae Causing Black Root Rot and Identification of Novel Sources of Resistance in Mulberry Collections

  • Gnanesh, Belaghihalli N. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute) ;
  • Arunakumar, Gondi S. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute) ;
  • Tejaswi, Avuthu (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute) ;
  • Supriya, M. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute) ;
  • Manojkumar, Haniyambadi B. (Molecular Biology Laboratory-1, Central Sericultural Research and Training Institute) ;
  • Devi, Suvala Shalini (Department of Microbiology, Bhavan's Vivekananda College of Science, Humanities and Commerce)
  • Received : 2022.01.20
  • Accepted : 2022.05.02
  • Published : 2022.08.01

Abstract

Black root rot (BRR) caused by Lasiodiplodia theobromae is an alarming disease of mulberry that causes tremendous economic losses to sericulture farmers in India and China. Successful control of this disease can be attained by screening germplasm and identifying resistant sources. Seventy four diseased root samples were collected from farmer's fields belonging to four major mulberry growing states of South India. Based on morpho-cultural and scanning electron microscopy studies, 57 fungal isolates were characterized and identified as L. theobromae. Phylogenetic analysis of concatenated internal transcribed spacer and β-tubulin sequences revealed variation of the representative 20 isolates of L. theobromae. Following the root dip method of inoculation, pathogenicity studies on susceptible mulberry genotypes (Victory-1 and Thailand male) recognized the virulent isolate MRR-142. Accordingly, MRR-142 isolate was used to evaluate resistance on a set of 45 diverse mulberry accessions. In the repeated experiments, the mulberry accession ME-0168 which is an Indonesian origin belonging to Morus latifolia was found to be highly resistant consistently against BRR. Eight accessions (G2, ME-0006, ME-0011, ME-0093, MI-0006, MI-0291, MI-0489, and MI-0501) were found to be resistant. These promising resistant resources may be exploited in mulberry breeding for developing BRR resistant varieties and to develop mapping populations which successively helps in the identification of molecular markers associated with BRR.

Keywords

Acknowledgement

The first author would like to thank the Department of Science and Technology, for providing Ramanujan Fellowship. This study was funded by Science and Engineering Research Board (SERB), New Delhi, Grant (SERB SB/S2/RJN-049/2015). The authors also thank Scientists of different Regional Sericultural Research Stations and Research Extension Centers of the Institute for their support during the survey.

References

  1. Ahmed, A. S., Perez-Sanchez, C., Egea, C. and Candela, M. E. 1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepper plants. Plant Pathol. 48:58-65. https://doi.org/10.1046/j.1365-3059.1999.00317.x
  2. Alves, A., Crous, P. W., Correia, A. and Phillips, A. J. L. 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 28:1-13.
  3. Arunakumar, G. S., Gnanesh, B. N., Manojkumar, H. B., Doss, S. G., Mogili, T., Sivaprasad, V. and Tewary, P. 2021. Genetic diversity, identification, and utilization of novel genetic resources for resistance to Meloidogyne incognita in mulberry (Morus spp.). Plant Dis. 105:2919-2928. https://doi.org/10.1094/PDIS-11-20-2515-RE
  4. Arunakumar, G. S., Revanna, S., Kumar, V., Yadav, V. K. and Sivaprasad, V. 2018. Studies on scanning electron microscopy and fungal association with root knot nematode in major mulberry growing areas of Southern Karnataka. J. Entomol. Zool. Stud. 6:511-518.
  5. Banerjee, R., Maji, M. D., Ghosh, P. and Sarkar, A. 2009. Genetic analysis of disease resistance against Xanthomonas campestris pv. mori in mulberry (Morus spp.) and identification of germplasm with high resistance. Arch. Phytopathol. Plant Prot. 42:291-297. https://doi.org/10.1080/03235400601069563
  6. Bautista-Cruz, M. A., Almaguer-Vargas, G., Leyva-Mir, S. G., Colinas-Leon, M. T., Correia, K. C., Camacho-Tapia, M., Robles-Yerena, L., Michereff, S. J. and Tovar-Pedraza, J. M. 2019. Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with cankers and dieback symptoms of Persian lime in Mexico. Plant Dis. 103:1156-1165. https://doi.org/10.1094/pdis-06-18-1036-re
  7. Bozzola, J. J. and Russell, L. D. 1992. Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston, MA, USA. 670 pp.
  8. Central Silk Board. 2020. Annual report 2019-2020, English version, Central Silk Board, Bangalore. URL http://csb.gov.in/publications/annual-report/ [16 March 2022].
  9. Chattopadhyay, S., Ali, K. A., Doss, S. G., Das, N. K., Aggarwal, R. K., Bandopadhyay, T. K., Sarkar, A. and Bajpai, A. K. 2010. Evaluation of mulberry germplasm for resistance to powdery mildew in the field and greenhouse. J. Gen. Plant Pathol. 76:87-93. https://doi.org/10.1007/s10327-010-0221-x
  10. Chen, J., Zhu, Z., Fu, Y., Cheng, J., Xie, J. and Lin, Y. 2021. Identification of Lasiodiplodia pseudotheobromae causing fruit rot of citrus in China. Plants 10:202. https://doi.org/10.3390/plants10020202
  11. Chowdary, N. B. 2006. Studies on root rot disease of mulberry (Morus spp.) and its management with special reference to the antagonistic microbes. Ph.D. thesis. The University of Mysore, Mysore, India.
  12. Datta, R. K. 2000. Mulberry cultivation and utilization in India. URL http://www.fao.org/DOCREP/005/X9895E/ x9895e04.htm#TopOfPage [16 March 2022].
  13. de Silva., N. I., Phillips, A. J. L., Liu, J.-K., Lumyong, S. and Hyde, K. D. 2019. Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Sci. Rep. 9:14355. https://doi.org/10.1038/s41598-019-50804-x
  14. Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  15. Gnanesh, B. N., Tejaswi, A., Arunakumar, G. S., Supriya, M., Manojkumar, H. B. and Tewary, P. 2021. Molecular phylogeny, identification and pathogenicity of Rhizopus oryzae associated with root rot of mulberry in India. J. Appl. Microbiol. 131:360-374. https://doi.org/10.1111/jam.14959
  16. Joty, F. A., Hasan, M. M., Khatun, R., Billah, M. M., Miah, M. M., Mahmud, S., Reza, M. A. and Ferdousi, Z. 2019. Evaluation of antibacterial and antioxidant activity of three plant species from Morus genus. Int. J. Biosci. 14:183-189.
  17. Kamil, F. H., Saeed, E. E., El Tarabily, K. A. and AbuQamar, S. F. 2018. Biological control of mango dieback disease caused by Lasiodiplodia theobromae using streptomycete and nonstreptomycete actinobacteria in the United Arab Emirates. Front. Microbiol. 9:829. https://doi.org/10.3389/fmicb.2018.00829
  18. Kumar, S., Stecher, G., Li, M., Knyaz C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  19. Latha, P., Prakasam, V., Jonathan, E. I., Samiyappan, R. and Natarajan, C. 2013. Effect of culture media and environmental factors on mycelial growth and pycnidial production of Lasiodiplodia theobromae in physic nut (Jatropha curcas). J. Environ. Biol. 34:683-687.
  20. Leroch, M., Kretschmer, M. and Hahn, M. 2011. Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J. Phytopathol. 159:63-65. https://doi.org/10.1111/j.1439-0434.2010.01719.x
  21. Liang, L., Li, H., Zhou, L. and Chen, F. 2019. Lasiodiplodia pseudotheobromae causes stem canker of Chinese hackberry in China. J. For. Res. 31:2571-2580. https://doi.org/10.1007/s11676-019-01049-x
  22. Maji, M. D. 2011. Genetic variability of mulberry (Morus spp.) germplasm against powdery mildew (Phyllactinia corylea) and identification of high resistance genotypes. Arch. Phytopathol. Plant Prot. 44:513-519. https://doi.org/10.1080/03235400903145376
  23. Munirah, M. S., Azmi, A. R., Yong, S. Y. C. and Nur Ain Izzati, M. Z. 2017. Characterization of Lasiodiplodia theobromae and L. pseudotheobromae causing fruit rot on pre-harvest mango in Malaysia. Plant Pathol. Q. 7:202-213.
  24. Muniz, C. R., Freire, F. C. O., Viana, F. M. P., Cardoso, J. E., Cooke, P., Wood, D. and Guedes, M. I. F. 2011. Colonization of cashew plants by Lasiodiplodia theobromae: microscopical features. Micron 42:419-428. https://doi.org/10.1016/j.micron.2010.12.003
  25. Naik, V. N., Sharma, D. D. and Yadav, B. R. 2010. Screening of mulberry varieties/genotypes against root disease complex. Indian J. Nematol. 40:240-242.
  26. Nam, M. H., Park, M. S., Kim, H. S., Kim, T. I., Lee, E. M., Park, J. D. and Kim, H. G. 2016. First report of dieback caused by Lasiodiplodia theobromae in strawberry plants in Korea. Mycobiology 44:319-324. https://doi.org/10.5941/MYCO.2016.44.4.319
  27. Narayanan, P., Vanitha, S., Rajalakshmi, J., Parthasarathy, S., Arunkumar, K., Nagendran, K. and Karthikeyan, G. 2015. Efficacy of bio-control agents and fungicides in management of mulberry wilt caused by Fusarium solani. J. Biol. Control 29:107-114. https://doi.org/10.18641/jbc/29/2/79826
  28. Nelson, E. B. 2004. Biological control of oomycetes and fungal pathogens. In: Encyclopedia of plant and crop science, ed. by R. M. Goodman, pp. 137-140. Marcel Dekker, Inc., New York, USA.
  29. Oliveira, L. S. S., Pimenta, L. V. A., Guimaraes, L. M. S., de Souza, P. V. D., Bhering, L. L. and Alfenas, A. C. 2021. Resistance of kiwifruit cultivars to ceratocystis wilt: an approach considering the genetic diversity and variation in aggressiveness of the pathogen. Plant Pathol. 70:349-357. https://doi.org/10.1111/ppa.13305
  30. Pandey, A. K., Yee, M., Win, M. M., Lwin, H. M. M., Adapala, G., Rathore, A., Sheu, Z.-M. and Nair, R. M. 2021. Identification of new sources of resistance to dry root rot caused by Macrophomina phaseolina isolates from India and Myanmar in a mung bean mini-core collection. Crop Prot. 143:105569. https://doi.org/10.1016/j.cropro.2021.105569
  31. Pappachan, A., Rahul, K., Iren, L. and Sivaprasad, V. 2020. Molecular identification of fungi associated with mulberry root rot disease in Eastern and North Eastern India. J. Crop Weed. 16:180-185. https://doi.org/10.22271/09746315.2020.v16.i1.1291
  32. Pecenka, J., Tekielska, D. A., Kocanova, M., Penazova, E., Berraf-Tebbal, A. and Eichmeier, A. 2021. First report of Lasiodiplodia theobromae causing decline of blueberry (Vaccinium corymbosum L.) in the Czech Republic. Plant Dis. 105:215.
  33. Pinto, M. V., HS, P., MS, R., R, T. and Naik, V. G. 2018. Association mapping of quantitative resistance to charcoal root rot in mulberry germplasm. PLoS ONE 13:e0200099. https://doi.org/10.1371/journal.pone.0200099
  34. Radhakrishnan, N. V., Ramabadran, R. and Jayaraj, J. 1995. Botryodiplodia root rot: a new disease of mulberry. Indian Phytopathol. 48:490-492.
  35. Rajeswari, P. and Angappan, K. 2018. Prevalence of mulberry root rot disease in Tamil Nadu. Int. J. Chem. Stud. 6:1573-1575.
  36. Rosado, A. W. C., Machado, A. R., Freire, F. D. C. O. and Pereira, O. L. 2016. Phylogeny, identification, and pathogenicity of Lasiodiplodia associated with postharvest stem-end rot of coconut in Brazil. Plant Dis. 100:561-568. https://doi.org/10.1094/PDIS-03-15-0242-RE
  37. Saeed, E. E., Sham, A., AbuZarqa, A., Al Shurafa, K. A., Al Naqbi, T. S., Iratni, R., El-Tarabily, K. and AbuQamar, S. F. 2017. Detection and management of mango dieback disease in the United Arab Emirates. Int. J. Mol. Sci. 18:2086. https://doi.org/10.3390/ijms18102086
  38. Salvatore, M. M., Andolfi, A. and Nicoletti, R. 2020. The thin line between pathogenicity and endophytism: the case of Lasiodiplodia theobromae. Agriculture 10:488. https://doi.org/10.3390/agriculture10100488
  39. Sharma, D. D., Naik, V. N., Chowdary, N. B. and Mala, V. R. 2003. Soil borne diseases of mulberry and their management. Int. J. Ind. Entomol. 7:93-106.
  40. Slippers, B., Boissin, E., Phillips, A. J. L., Groenewald, J. Z., Lombard, L., Wingfield, M. J., Postma, A., Burgess, T. and Crous, P. W. 2013. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud. Mycol. 76:31-49. https://doi.org/10.3114/sim0020
  41. Sowmya, P., Naik, V. N., Sivaprasad, V. and Naik, V. G. 2018. Characterization and correlation of pathogenicity of Botryodiplodia theobromae isolates, the causal agent of black root rot of mulberry (Morus spp.). Arch. Phytopathol. Plant Prot. 51:1022-1038. https://doi.org/10.1080/03235408.2018.1544192
  42. Sukumar, J. and Padma, S. D. 1999. Diseases of mulberry in India: research progress and priorities. In: Advances in mulberry sericulture, eds. by M. C. Devaiah, K. C. Narayanaswamy and V. G. Maribashetty, pp. 152-186. C. V. G. Publications, Bangalore, India.
  43. Tikader, A. and Dandin, S. B. 2007. Pre-breeding efforts to utilize two wild Morus species. Curr. Sci. 92:1729-1733.
  44. Tovar-Pedraza, J. M., Mora-Aguilera, J. A., Nava-Diaz, C., TelizOrtiz, D., Valdovinos-Ponce, G., Villegas-Monter, A. and Hernandez-Morales, J. 2012. Identification, pathogenicity, and histopathology of Lasiodiplodia theobromae on mamey sapote grafts in Guerrero, Mexico. Agrociencia 46:147-161.
  45. Vijayan, K., Tikader, A., Zhao, W. G., Nair, C. V., Ercisli, S. and Tsou, C. H. 2011. Morus. In: Wild crop relatives: genomic and breeding resources, tropical and subtropical fruits, ed. by C. Kole, pp. 75-95. Springer-Verlag, Berlin/Heidelberg, Germany.
  46. White, T., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols, a guide to methods and applications, eds. M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.
  47. Xie, H. H., Huang, F. Y., Lan, X., Zhang, X. L., Wang, H. N., Lv, H. and Zhang, X. 2016. Antifungal effects of sisal leaf juice on Lasiodiplodia theobromae, the causal agent of mulberry root rot. Afr. J. Biotechnol. 15:165-171. https://doi.org/10.5897/AJB2015.15112
  48. Xie, H. H., Wei, J. G., Liu, F., Pan, X. H. and Yang, X. B. 2014. First report of mulberry root rot caused by Lasiodiplodia theobromae in China. Plant Dis. 98:1581.
  49. Yoshida, S., Murakami, R., Watanabe, T. and Koyama, A. 2001. Rhizopus rot of mulberry-grafted saplings caused by Rhizopus oryzae. J. Gen. Plant Pathol. 67:291-293. https://doi.org/10.1007/PL00013033