• Title/Summary/Keyword: Molecular diffusion

Search Result 445, Processing Time 0.027 seconds

Application of a mapping method for mixing analysis of micromixers (마이크로믹서의 혼합해석을 위한 매핑법 적용)

  • Kang, Tae-Gon;Singh, Mrityunjay K.;Anderson, Patrick D.;Kwon, Tai-Hun;Meijer, Han E.H.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1758-1760
    • /
    • 2008
  • Under typical operating conditions, flows in microfluidic devices are laminar and molecular diffusion across the channels is slow, which makes an efficient mixing in microfluidic devices difficult to achieve. The mechanism to achieve effective mixing in laminar flows is that of repetitive stretching and folding. Essential is to generate spatially periodic flows with crossing cross sectional streamlines. A mapping method is employed to analyze mixing in micromixers, enabling us to investigate the progress of mixing both qualitatively and quantitatively. The progress of mixing is characterized by a measure of mixing, called the discrete intensity of segregation. The mapping method is applied to mixing in such micromixers as the staggered herringbone mixer, the barrier embedded micromixer, and the three-dimensional serpentine channel to demonstrate the capability of the numerical scheme to tackle general mixing problems in microfluidic devices.

  • PDF

Recommendations for the Selective Labeling of [$^{15}N$]-Labeled Amino Acids without Using Auxotrophic Strains

  • Chae, Young-Kee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.133-139
    • /
    • 2000
  • The strategy to incorporate [$^{15}$ N]-labeled amino acids were discussed. Instead of using specific auxotrophic strains for selective labeling, the prototrophic strain, BL2l(DE3), was used with a plasmid, pLysS, and found to be very effective for several amino acids including alanine, lysine, leucine, and threonine. Isoleucine, valine, glutamine, and tyrosine were also found to be effective despite some diffusion into other amino acids. Interesting result was obtained when [$^{15}$ N]-labeled glycine was tried: only glycines were labeled when amino acid mixture was added in the growth medium, and serines were co-labeled when amino acids were omitted. These results can be used as a guideline when selective labeling strategy is considered, and when the resulting data are interpreted.

  • PDF

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

Development of Transport Parameters affecting on the Removal of Micro Organic Compounds such as Disinfection By-Products and Pharmaceutically Active Compounds by Low-Pressure Nanofiltration

  • Oh, Jeong-Ik;Yamamoto, Kazuo
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • This study investigated the removal characteristics of various micro organic compounds by low-pressure nanofiltration membranes comprised of disinfection by products and pharmaceutically active compounds. The experimental removal of micro organic compounds by low-pressure nanofiltration membranes was compared with the transport model calculations, which consist of diffusion and convection terms including steric hindrance factor. The selected molecule from the disinfection byproducts and pharmaceutical active compounds showed a much lower removal than polysac-charides with a similar molecular size. However,the difference between model calculation and experimental removal of disinfection by-products and pharmaceutically active compounds could be corrected. The correlation of Ks with solute radius was further considered to clarity transport phenomena of micro organic solutes through nanofiltration membranes.

An Effective Numerical Method for the Prediction of Oil Spreading (누유확산 및 이동의 추정을 위한 효율적인 수치기법)

  • Song, J.U.;Rho, J.H.;Yoon, B.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.113-118
    • /
    • 1997
  • A simulation model and its numerical algorithm for the prediction of time-varying oil pollution region are proposed. Not only forces inducing molecular diffusion of oil but also oil advection due to the ocean surface current are considered in the present unified model Furthermore, an automatic modulation of computational grid is introduced to achieve more practical and effective numerical scheme. Applying the present method to some assumed oil spill cases, quite realistic oil maps are thought to be obtained.

  • PDF

The percutaneous absorption of antisense phosphorothioate oligonucleotide (ASPS) complementary to TGF-$\beta$ mRNA designed for scar formation inhibitor

  • Lee, Young-Mi;Lee, Sung-Hee;Kim, Su-Ung;Lee, Seong-Yong;Kim, Jaebaek;Sohn, Dong-Hwan
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.129-129
    • /
    • 1995
  • ASPS against TGF-${\beta}$ is developing as scar formation inhibitor. The scar was caused by undesired collagen deposition due to overexpression of TGF-${\beta}$ in wounded tissue. The in vitro percutaneous absorption of ASPS(25mer)was investigated by using Furanz Diffusion Cell. The flux of ASPS cannot be found through normal skin due to high molecular weight (MW 10,000) and polyanionic charge. However, the skin permeation of ASPS through tape-stripped damaged skin was markedly increased. The skin fluxs of ASPS were decreased in the following order; hairless mouse> rat >human cadaver skin.

  • PDF

Selective Separations Using Molecularly Imprinted Membranes (분자 각인 막의 선택적 분리)

  • Lee, Jeong-Woo;Park, Joong-Kon
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.133-141
    • /
    • 2005
  • This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.

Effect of Matrix Viscosity on Clay Dispersion in Preparation of Polymer/Organoclay Nanocomposites

  • Ko, Moon-Bae;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.103-108
    • /
    • 2002
  • The viscosity effect of matrix polymer on melt exfoliation behavior of an organoclay in poly($\varepsilon$-caprolactone) (PCL) was investigated. The viscosity of matrix polymer was controlled by changing the molecular weight of poly($\varepsilon$-eaprolactone), the processing temperature, and the rotor speed of a mini-molder. Applied shear stress facilitates the diffusion of polymer chains into the gallery of silicate layers by breaking silicate agglomerates down into smaller primary particles. When the viscosity of PCL is lower, silicate agglomerates are not perfectly broken into smaller primary particles. At higher viscosity, all of silicate agglomerates are broken down into primary particles, and finally into smaller nano-scale building blocks. It was also found that the degree of exfoliation of silicate layers is dependent upon not only the viscosity of matrix but thermodynamic variables.

PRELIMINARY X-Ray DIFFRACTION STUDY OF Pseudomonas sp. DJ77 GLUTATHIONE S-TRANSFERASE

  • Park, Heung-Soo;Chung, An-Sik;Ryu, Seong-Eon;Suh, Se-Won;Kim, Young-Chang;Chung, Yong-Je
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.20-20
    • /
    • 1996
  • Crystals of a bacterial glutathione S-transferase(pGST) from pseudomonas sp. DJ 77 have been grown by hanging drop method of vapour diffusion from ammonium sulfate solution. The low concentration of polyethylene glycol 400 as additive were found to be essential for the reproducible growth of large single crystal of pGST. (omitted)

  • PDF

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.