• Title/Summary/Keyword: Molecular design

검색결과 741건 처리시간 0.022초

Computational Drug Discovery Approach Based on Nuclear Factor-κB Pathway Dynamics

  • Nam, Ky-Youb;Oh, Won-Seok;Kim, Chul;Song, Mi-Young;Joung, Jong-Young;Kim, Sun-Young;Park, Jae-Seong;Gang, Sin-Moon;Cho, Young-Uk;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4397-4402
    • /
    • 2011
  • The NF-${\kappa}B$ system of transcription factors plays a crucial role in inflammatory diseases, making it an important drug target. We combined quantitative structure activity relationships for predicting the activity of new compounds and quantitative dynamic models for the NF-${\kappa}B$ network with intracellular concentration models. GFA-MLR QSAR analysis was employed to determine the optimal QSAR equation. To validate the predictability of the $IKK{\beta}$ QSAR model for an external set of inhibitors, a set of ordinary differential equations and mass action kinetics were used for modeling the NF-${\kappa}B$ dynamic system. The reaction parameters were obtained from previously reported research. In the IKKb QSAR model, good cross-validated $q^2$ (0.782) and conventional $r^2$ (0.808) values demonstrated the correlation between the descriptors and each of their activities and reliably predicted the $IKK{\beta}$ activities. Using a developed simulation model of the NF-${\kappa}B$ signaling pathway, we demonstrated differences in $I{\kappa}B$ mRNA expression between normal and different inhibitory states. When the inhibition efficiency increased, inhibitor 1 (PS-1145) led to long-term oscillations. The combined computational modeling and NF-${\kappa}B$ dynamic simulations can be used to understand the inhibition mechanisms and thereby result in the design of mechanism-based inhibitors.

Effects of FIS Protein on rnpB Transcription in Escherichia coli

  • Choi, Hyun-Sook;Kim, Kwang-sun;Park, Jeong Won;Jung, Young Hwan;Lee, Younghoon
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.239-245
    • /
    • 2005
  • Factor for inversion stimulation (FIS), the Escherichia coli protein, is a positive regulator of the transcription of genes that encode stable RNA species, such as rRNA and tRNA. Transcription of the rnpB gene encoding M1 RNA, the catalytic subunit of E. coli RNase P, rapidly declines under stringent conditions, as does that of other stable RNAs. There are multiple putative FIS binding sites upstream of the rnpB promoter. We tested whether FIS binds to these sites, and if so, how it affects rnpB transcription. In vitro binding assays revealed specific binding of FIS to multiple sites in the rnpB promoter region. Interestingly, FIS bound not only to the upstream region of the promoter, but also to the region from +4 to +18. FIS activated rnpB transcription in vitro, but the level of activation was much lower than that of the rrnB promoter for rRNA. We also examined the effects of FIS on rnpB transcription in vivo using isogenic $fis^+$ and $fis^-$ strains. rnpB transcription was higher in the $fis^-$ than the $fis^+$ cells during the transitions from lag to exponential phase, and from exponential to stationary phase.

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

Probiotics용 유산균의 Design과 Molecular Typing에 의한 동정법 (Design of Lactic Acid Bacteria Aiming at Probiotic Culture and Molecular Typing for Phyogenetic Identification)

  • 윤성식
    • Journal of Dairy Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.47-60
    • /
    • 2000
  • Over decades of work, the probiotic research has grown rapidly with a number of new cultures, which is claimed a variety of benefit. However, many of the specific effects attributed to the ingestion of probiotics remain convoluted and scientifically unsubstantiated. Accordingly, the scientific community faces a greater challenge and must objectively seek cause and effect relationships for many potential and currently investigated probiotic species. Rational selection and design of probiotics remains an important challenge and will require a solid information about the physiology and genetics of candidate strains relevant to their intestinal roles, functional activities, and interaction of with other resident micro flora. As far as beneficial culture of lactic acid bacteria (LAB) is concerned, simple, cost-effective, and exact identification of candidate strains is of foremost importance among others. Until recently, the relatedness of bacterial isolates has been determined sorely by testing for one or several phenotyphic markers, using methods such as serotyping, phage-typing, biotyping, and so forth. However, there are problems in the use of many of these phenotype-based methods. In contrast, some of newer molecular typing methods involving the analysis of DNA offer many advantages over traditional techniques. These DNA-based methods have the greater discriminatory power than that of phenotypic procedures. This review focuses on the importance and the basis of molecular typing methods along with some considerations on de-sign and selection of probiotic culture for human consumption.

  • PDF