• Title/Summary/Keyword: Molecular cytogenetics

Search Result 56, Processing Time 0.014 seconds

mTOR signalling pathway - A root cause for idiopathic autism?

  • Ganesan, Harsha;Balasubramanian, Venkatesh;Iyer, Mahalaxmi;Venugopal, Anila;Subramaniam, Mohana Devi;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2019
  • Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals.

Distribution and Pathogenicity of Fusarium Species Associated with Soybean Root Rot in Northeast China

  • Yingying Liu;Xuena Wei;Feng Chang;Na Yu;Changhong Guo;Hongsheng Cai
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.575-583
    • /
    • 2023
  • Fusarium root rot is an increasingly severe problem in soybean cultivation. Although several Fusarium species have been reported to infect soybean roots in Heilongjiang province, their frequency and aggressiveness have not been systematically quantified in the region. This study aimed to investigate the diversity and distribution of Fusarium species that cause soybean root rot in Heilongjiang province over two years. A total of 485 isolates belonging to nine Fusarium species were identified, with F. oxysporum and F. solani being the most prevalent. Pot experiments were conducted to examine the relative aggressiveness of different Fusarium species on soybean roots, revealing that F. oxysporum and F. solani were the most aggressive pathogens, causing the most severe root rot symptoms. The study also assessed the susceptibility of different soybean cultivars to Fusarium root rot caused by F. oxysporum and F. solani. The results indicated that the soybean cultivar DN51 exhibited the most resistance to both pathogens, indicating that it may possess genetic traits that make it less susceptible to Fusarium root rot. These findings provide valuable insights into the diversity and distribution of Fusarium species that cause soybean root rot and could facilitate the development of effective management strategies for this disease.

Overview of Cytogenetic Technologies (세포유전학 기술에 관한 고찰)

  • Kang, Ji-Un
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • Cytogenetic analysis plays an important role in examinations of a variety of human disorders. Over the years, cytogenetic analysis has evolved to a great extent and become a part of routine laboratory testing; the analysis provides significant diagnostic and prognostic results for human diseases. Microarray in conjunction with molecular cytogenetics and conventional chromosome analysis has transformed the outcomes of clinical cytogenetics. The advantages of microarray technologies have become obvious to the medical and laboratory community involved in genetic diagnosis, resulting in greatly improved visualization and validation capabilities. This article reviews how the field is moving away from conventional cytogenetics towards molecular approaches for the identification of pathogenic genomic imbalances and discusses practical considerations for the routine implementation of these technologies in genetic diagnosis.

Post-cancer Treatment with Condurango 30C Shows Amelioration of Benzo[a]pyrene-induced Lung Cancer in Rats Through the Molecular Pathway of Caspase-3-mediated Apoptosis Induction -Anti-lung cancer potential of Condurango 30C in rats-

  • Sikdar, Sourav;Mukherjee, Avinaba;Bishayee, Kausik;Paul, Avijit;Saha, Santu Kumar;Ghosh, Samrat;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2013
  • Objectives: The present investigation aimed at examining if post-cancer treatment with a potentized homeopathic drug, Condurango 30C, which is generally used to treat oesophageal cancer, could also show an ameliorating effect through apoptosis induction on lung cancer induced by benzo[a]pyrene (BaP) in white rats (Rattus norvegicus). Methods: Lung cancer was induced after four months by chronic feeding of BaP to rats through gavage at a dose of 50 mg/kg body weight for one month. After four months, the lung-cancer-bearing rats were treated with Condurango 30C for the next one ($5^{th}$), two ($5^{th}-6^{th}$) and three ($5^{th}-7^{th}$) months, respectively, and were sacrificed at the corresponding time-points. The ameliorating effect, if any, after Condurango 30C treatment for the various periods was evaluated by using protocols such as histology, scanning electron microscopy (SEM), annexinV-FITC/PI assay, flow cytometry of the apoptosis marker, DNA fragmentation, reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and western blot analyses of lung tissue samples. Results: Striking recovery of lung tissue to a near normal status was noticed after post-cancerous drug treatment, as evidenced by SEM and histology, especially after one and two months of drug treatment. Data from the annexinV-FITC/PI and DNA fragmentation assays revealed that Condurango 30C could induce apoptosis in cancer cells after post-cancer treatment. A critical analysis of signalling cascade, evidenced through a RT-PCR study, demonstrated up-regulation and down-regulation of different pro- and anti-apoptotic genes, respectively, related to a caspase-3-mediated apoptotic pathway, which was especially discernible after one-month and two-month drug treatments. Correspondingly, Western blot and immunohistochemistry studies confirmed the ameliorative potential of Condurango 30C by its ability to down-regulate the elevated epidermal growth factor receptor (EGFR) expression, a hallmark of lung cancer. Conclusion: The overall result validated a positive effect of Condurango 30C in ameliorating lung cancer through caspase-3-mediated apoptosis induction and EGFR down-regulation.

Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis

  • Asmita Samadder;Banani Bhattacharjee;Sudatta Dey;Arnob Chakrovorty;Rishita Dey;Priyanka Sow;Debojyoti Tarafdar;Maharaj Biswas;Sisir Nandi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • Background: Diabetic nephropathy (DN) is one of the major complications of chronic hyperglycaemia affecting normal kidney functioning. The ayurvedic medicine curcumin (CUR) is pharmaceutically accepted for its vast biological effects. Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.

Correlation between EGFR Gene Mutations and Lung Cancer: a Hospital-Based Study

  • Kavitha, Matam;Iravathy, Goud;Adi Maha, Lakshmi M;Ravi, V;Sridhar, K;Vijayanand, Reddy P;Chakravarthy, Srinivas;Prasad, SVSS;Tabassum, Shaik Nazia;Shaik, Noor Ahmad;Syed, Rabbani;Alharbi, Khalid Khalaf;Khan, Imran Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7071-7076
    • /
    • 2015
  • Epidermal growth factor receptor (EGFR) is one of the targeted molecular markers in many cancers including lung malignancies. Gefitinib and erlotinib are two available therapeutics that act as specific inhibitors of tyrosine kinase (TK) domains. We performed a case-control study with formalin-fixed paraffin-embedded tissue blocks (FFPE) from tissue biopsies of 167 non-small cell lung carcinoma (NSCLC) patients and 167 healthy controls. The tissue biopsies were studied for mutations in exons 18-21 of the EGFR gene. This study was performed using PCR followed by DNA sequencing. We identified 63 mutations in 33 men and 30 women. Mutations were detected in exon 19 (delE746-A750, delE746-T751, delL747-E749, delL747-P753, delL747-T751) in 32 patients, exon 20 (S786I, T790M) in 16, and exon 21 (L858R) in 15. No mutations were observed in exon 18. The 63 patients with EFGR mutations were considered for upfront therapy with oral tyrosine kinase inhibitor (TKI) drugs and have responded well to therapy over the last 15 months. The control patients had no mutations in any of the exons studied. The advent of EGFR TKI therapy has provided a powerful new treatment modality for patients diagnosed with NSCLC. The study emphasizes the frequency of EGFR mutations in NSCLC patients and its role as an important predictive marker for response to oral TKI in the south Indian population.

Condurango (Gonolobus condurango) Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro -CE-treatment on HeLa: a ROS-dependent mechanism-

  • Bishayee, Kausik;Mondal, Jesmin;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.32-41
    • /
    • 2015
  • Objectives: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs). Results: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha ($TNF-{\alpha}$) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

Meningeal Hemangiopericytomas and Meningomas: a Comparative Immunohistochemical and Genetic Study

  • Trabelsi, Saoussen;Mama, Nadia;Chourabi, Maroua;Mastouri, Maroua Haddaji;Ladib, Mohamed;Popov, Sergey;Burford, Anna;Mokni, Moncef;Tlili, Kalthoum;Krifa, Hedi;Jones, Chris;Yacoubi, Mohamed Tahar;Saad, Ali;Brahim, Dorra H'mida-Ben
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6871-6876
    • /
    • 2015
  • Background: The meningeal hemangiopericytoma (MHPC) is a vascular tumor arising from pericytes. Most intracranial MHPCs resemble meningiomas (MNGs) in their clinical presentation and histological features and may therefore be misdiagnosed, despite important differences in prognosis. Materials and Methods: We report 8 cases of MHPC and 5 cases of MNG collected from 2007 to 2011 from the Neuro-Surgery and Histopathology departments. All 13 samples were re reviewed by two independent pathologists and investigated by immunohistochemistry (IHC) using mesenchymal, epithelial and neuro-glial markers. Additionally, we screened all tumors for a large panel of chromosomal alterations using multiplex ligation probe amplification (MLPA). Presence of the NAB2-STAT6 fusion gene was inferred by immunohistochemical staining for STAT6. Results: Compared with MNG, MHPCs showed strong VIM (100% of cases), CD99 (62%), bcl-2 (87%), and p16 (75%) staining but only focal positivity with EMA (33%) and NSE (37%). The p21 antibody was positive in 62% of MHPC and less than 1% in all MNGs. MLPA data did not distinguish HPC from MNG, with PTEN loss and ERBB2 gain found in both. By contrast, STAT6 nuclear staining was observed in 3 MHPC cases and was absent from MNG. Conclusions: MNG and MHPC comprise a spectrum of tumors that cannot be easily differentiated based on histopathology. The presence of STAT6 nuclear positivity may however be a useful diagnostic marker.

PHA-Induced Peripheral Blood Cytogenetics and Molecular Anslysis : a Valid Diagnostic and Follow-up Modality For Acute Primyelocytic Leukemia Patients Treated With ATRA and/or Arsenic Tri-oxide

  • Baba, Shahid M;Azad, Niyaz A;Shah, Zaffar A;Afroze, Dil;Pandith, Arshad A;Jan, Aleem;Aziz, Sheikh A;Dar, Fayaz A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1999-2006
    • /
    • 2016
  • Background: Acute promyelocytic leukemia (APML) is characterized by the reciprocal translocation t(15;17) (p22;p12) resulting in the PML-$RAR{\alpha}$ fusion gene. A dual diagnostic and follow up approach was applied including cytogenetic demonstration of the t(15;17) translocation and detection dg PML-$RAR{\alpha}$ chimeric transcripts by molecular means. Purpose: Conventional cytogenetics involving bone marrow is beset with high probability of poor metaphase index and was substituted with phytohemagglutinin (PHA)-induced peripheral blood culture based cytogenetic analysis as a diagnostic & follow up modality in APML patients of Kashmir (North India). Both qualitative (RT-PCR) and quantitative (Q-PCR) tests were simultaneously carried out to authenticte the modified cytogenetics. Materials and Method: Patient samples were subjected to the said techniques to establish their baseline as well as follow-up status. Results: Initial cytogenetics revealed 30 patients (81%) Positive for t(15;17) whereas 7 (19%) had either cryptic translocation or were negative for t(15;17). Two cases had chromosome 16q deletion and no hallmark translocation t(15;17). Q-PCR status for PML-$RAR{\alpha}$ was found to be positive for all patients. All the APML patients were reassessed at the end of consolidation phase and during maintenance phase of chemotherapy where 6 patients had molecular relapse, wherein 4 also demonstrated cytogenetic relapse. Conclusions: It was found that PHA-induced peripheral blood cytogenetics along with molecular analysis could prove a reliable modality in the diagnosis and assessment of follow up response of APML patients.

Associations Between Age, Cytogenetics, FLT3-ITD, and Marrow Leukemia Cells Identified by Flow Cytometry

  • Su, Long;Gao, Su-Jun;Tan, Ye-Hui;Han, Wei;Li, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5341-5344
    • /
    • 2013
  • Objectives: To explore the relationships between age, cytogenetic subgroups, molecular markers, and cells with leukemic aberrant immunophenotype in patients with acute myeloid leukemia (AML). Methods: In this study, we evaluated the correlations between age, cytogenetic subgroups (normal, balanced and unbalance karyotype), molecular mutations (NPM1, FLT3-ITD, and CEBPA mutations) and marrow leukemia cells (LC) identified by flow cytometry in 256 patients with de novo AML. Results: From age group 10-19 years to age group ${\geq}60$ years, the percentage of LC decreased from $67.0{\pm}18.4%$ to $49.0{\pm}25.1%$ (F=2.353, P=0.041). LC percentage was higher in patients with balanced karyotypes ($65.7{\pm}22.4%$), than those with unbalanced karyotypes ($46.0{\pm}26.6%$) (u=3.444, P=0.001) or a normal karyotype ($49.9{\pm}22.1%$) (u=5.093, P<0.001). Patients with FLT3-ITD ($64.3{\pm}19.5%$) had higher LC percentages compared with those without ($54.2{\pm}24.3%$) (u=2.794, P=0.007). Conclusions: Associations between age, cytogenetics, molecular markers, and marrow leukemia cells may offer beneficial information to understand the biology and pathogenesis of AML.