• Title/Summary/Keyword: Molecular chaperones

Search Result 86, Processing Time 0.032 seconds

Protein and RNA Quality Control by Autophagy in Plant Cells

  • Yoon, Seok Ho;Chung, Taijoon
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.285-291
    • /
    • 2019
  • Eukaryotic cells use conserved quality control mechanisms to repair or degrade defective proteins, which are synthesized at a high rate during proteotoxic stress. Quality control mechanisms include molecular chaperones, the ubiquitin-proteasome system, and autophagic machinery. Recent research reveals that during autophagy, membrane-bound organelles are selectively sequestered and degraded. Selective autophagy is also critical for the clearance of excess or damaged protein complexes (e.g., proteasomes and ribosomes) and membrane-less compartments (e.g., protein aggregates and ribonucleoprotein granules). As sessile organisms, plants rely on quality control mechanisms for their adaptation to fluctuating environments. In this mini-review, we highlight recent work elucidating the roles of selective autophagy in the quality control of proteins and RNA in plant cells. Emphasis will be placed on selective degradation of membrane-less compartments and protein complexes in the cytoplasm. We also propose possible mechanisms by which defective proteins are selectively recognized by autophagic machinery.

Biological Characterization of the Omp1-like Protein from Actinobacillus actinomycetemcomitans

  • Ha, Jung-Hye;Jeong, Mi-Suk;Jo, Wol-Soon;Jeong, Min-Ho;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.275-280
    • /
    • 2010
  • Actinobacillus actinomycetemcomitans is a gram-negative, nonmotile coccobacillus bacterium that is associated with several human diseases, including endocarditis, meningitis, osteomyelitis, subcutaneous abscesses and periodontal diseases. A full-length Omp1-like protein gene from A. actinomycetemcomitans was cloned into a pQE30 vector and overexpressed in Escherichia coli BL21(DE3) cells. The protein revealed sequence homologies to Seventeen kilodalton proteins (Skp) from Pasteurella multocida and E. coli that have been characterized as periplasmic chaperones. This soluble Omp1-like protein was successfully purified to homogeneity for further folding and functional studies. The purity, identity, and conformation of the protein were determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization mass spectrometry, circular dichroism, fluorescence spectroscopic, and differential scanning calorimetric studies. We showed that the protein formed an oligomer larger than a tetramer. We found, further, that it is comprised of mostly $\alpha$-helices and boasts high thermal stability.

Expression of Yeast Cyclophilin A (Cpr1) Provides Improved Stress Tolerance in Escherichia coli

  • Kim, Il-Sup;Shin, Sun-Young;Kim, Young-Saeng;Kim, Hyun-Young;Lee, Dong-Hee;Park, Kyung-Moc;Jin, Ingn-Yol;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.974-977
    • /
    • 2010
  • Cyclophilins contain the conserved activity of cis-trans peptidyl-prolyl isomerase, which is implicated in protein folding, and function as molecular chaperones. When the yeast cyclophilin A gene (cpr1) was subcloned into the prokaryotic expression vector pKM260, it was found that the expression of Cpr1 drastically increased the cell viability of E. coli BL21 when under abiotic stress conditions, as in the presence of cadmium, copper, hydrogen peroxide, heat, and SDS. Therefore, this study illustrates the importance of Cpr1 as a molecular chaperone that can improve the cellular stress responses when E. coli cells are exposed to adverse conditions, while also demonstrating its potential to increase the stability of E. coli strains utilized for the production of recombinant proteins.

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh;Zougman, Alexandre;Stanley, Elise F.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.302-314
    • /
    • 2007
  • N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.

Functional switching of eukaryotic 2-Cys peroxiredoxins from peroxidases to molecular chaperones in response to oxidative stress

  • Jang, Ho-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.40-64
    • /
    • 2005
  • Much biochemical information on peroxiredoxins (Prxs) has been reported but a genuine physiological function for these proteins has not been established. We show here that two cytosolic yeast Prxs, cPrxI and II, exist in a variety of forms that differ in their structure and molecular weight (MW) and that they can act both as a peroxidase and as a molecular chaperone. The peroxidase function predominates in the lower MW proteins, whereas the chaperone function is more significant in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causesthe protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, $Cys^{47}$, which serves as an efficient $'H_2O_2-sensor'$ in the cells. The chaperone function of the proteins enhances yeast resistance to heat shock.

  • PDF

Enhancement of Soluble Expression of Alginate Lyase By Molecular Chaperone in E. coli. (대장균에서 분자 chaperone에 의한 alginate lyase의 가용성 발현 증대)

  • Shin, Eun-Jung;Lee, Jae-Hyung;Park, So-Lim;Kim, Hyeung-Rak;Nam, Soo-Wa
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.132-136
    • /
    • 2007
  • When alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was produced as aggregated insoluble particles known as inclusion bodies. In order to produce a soluble and active form of alginate lyase, E. coli cells fore cotransformed with the plasmids designed to permit coexpression of aly together with molecular chaperones such as DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results revealed that the coexpression of aly together with DnaK/DnaJ/GrpE chaperone had a marked effect on the production of this protein as a soluble and active form, presumably through facilitating correct folding of alginate lyase protein. The optimal concentration of L-arabinose for the induction of DnaK/DnaJ/GrpE chaperone was found to be 0.05 mg/ml. When DnaK/DnaJ/GrpE chaperone was coexpressed, about 34% in the total alginate lyase was produced in the soluble fraction. By addition of 10% cetylpyridinium chloride, a clear zone around the colony coexpressing aly and DnaK/DnaJ/GrpE chaperone was formed, indicating that the alginate in the medium was hydrolyzed by active alginate lyase enzyme.

Characterization of an Extracytoplasmic Chaperone Spy in Protecting Salmonella against Reactive Oxygen/Nitrogen Species

  • Park, Yoon Mee;Lee, Hwa Jeong;Bang, Iel Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with ${\lambda}$ Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in $H_2O_2$ containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to $H_2O_2$. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.554-561
    • /
    • 2007
  • Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

Characterization of Protein Disulfide Isomerase during Lactoferrin Polypeptide Structural Maturation in the Endoplasmic Reticulum

  • Lee, Dong-Hee;Kang, Seung-Ha;Choi, Yun-Jaie
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2001
  • A time-dependent folding process was used to determine whether or not protein disulfide isomerase (PDI) plays an important role in the maturation of nascent lactoferrin polypeptides. Interaction between lactoferrin and PDI was analyzed according to the co-immunoprecipitation of the two proteins. The results indicate that lactoferrin folding requires a significant interaction with PDI and its binding is relatively brief compared to other nascent polypeptides. The amount of lactoferrin interacting with PDI increases up to half a minute and sharply decreases beyond this time point. During the refolding process that follows reduction by DTT, lactoferrin polypeptides heavily interact with PDI and the interaction period was extended compared to the normal folding process. In terms of the temperature effect on PDI-lactoferrin interaction, PDI binds to lactoferrin polypeptides longer at a lower temperature (here, $25^{\circ}C$) than $37^{\circ}C$. The lactoferrin-PDI interaction was also studied in vitro. According to the in vitro experiment data, PDI was still functional in cell lysates assisting lactoferrin folding into the mature form. PDI interacts with lactoferrin polypeptides for an extended period during the folding in vitro. During the refolding process in vitro, intermolecular aggregates and refolding oligomers matured into a functional form after PDI binds to the lactoferrin. These results suggest that PDI provides a prolonged chaperoning activity in the refolding processes and that there appears to be a greater requirement for PDI chaperone activity in the refolding of lactoferrin polypeptides.

  • PDF

Bombyx mori Transcription Factor, ATFC Binds directly to the UPRE of Molecular Chaperones

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.76-76
    • /
    • 2003
  • We describe here the identification of a transcription factor, ATFC that regulates the UPR by binding to the UPRE only when the signaling pathway is activated. The data in this study cover the first set of results, showing that ATFC has a major role in the insect UPR. (omitted)

  • PDF