• 제목/요약/키워드: Molecular approach

검색결과 956건 처리시간 0.024초

Ab Initio Molecular Dynamics with Born-Oppenheimer and Extended Lagrangian Methods Using Atom Centered Basis Functions

  • Schlegel, H. Bernhard
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.837-842
    • /
    • 2003
  • In ab initio molecular dynamics, whenever information about the potential energy surface is needed for integrating the equations of motion, it is computed “on the fly” using electronic structure calculations. For Born-Oppenheimer methods, the electronic structure calculations are converged, whereas in the extended Lagrangian approach the electronic structure is propagated along with the nuclei. Some recent advances for both approaches are discussed.

Relativistic Molecular Theory

  • Nakajima, Takahito
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.809-811
    • /
    • 2003
  • This brief review contains surveys of both four-component and two-component relativistic molecular theories. First the four-component relativistic approach is reviewed. Emphasis is placed on efficient computational schemes for the four-component Dirac-Hartree-Fock and Dirac-Kohn-Sham methods. Next, in the twocomponent relativistic framework, two relativistic Hamiltonians, RESC and higher-order Douglas-Kroll (DK), are introduced. An illustrative application is shown for the relativistic study on valence photoelectron spectrum of OsO₄. The developing four-component relativistic and approximate quasi-relativistic methods have been packed in a program suite named REL4D.

Development of radiolabeled somatostatin derivatives for neuroendocrine tumors

  • Hee-Kwon Kim
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.127-131
    • /
    • 2021
  • Neuroendocrine tumor is one of popular diseases, and somatostatin receptor antagonists have been considered as promising agents for neuroendocrine tumors. Imaging of somatostatin receptor is useful approach on the diagnosis and therapy of neuroendocrine tumors. Thus, several radiolabeled somatostatin derivatives have been developed by scientists, and used for patients with neuroendocrine tumors. In particular, some radiopharmaceuticals for neuroendocrine tumors were approved by FDA. In this highlight review, the development of important radiolabeled somatostatin derivatives is described.

Preparation of iron oxide nanoparticle combined with radioisotope for molecular imaging

  • Park, Ji Yong;Lee, Yun-Sang;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제4권1호
    • /
    • pp.36-42
    • /
    • 2018
  • Molecular imaging refers to detect the biochemical process in living organisms at the cellular and molecular levels and to quantify them. Due to several advantages of nanomaterials, various molecular images using nanomaterials are being tried. Attempts have been made to combine nanoparticles, known as micro- or nanosized nanomaterials, with radioactive isotopes for molecular imaging probe. The radiolabeled nanoparticles will expend the molecular imaging due to nanoparticle's size-dependent nature. In particular, iron oxide nanoparticles can be used for magnetic resonance imaging, can be adjusted in size, easily functionalized, and biocompatible, making it a very good platform for molecular imaging. In addition, iron oxide nanoparticles may be the best example for a new approach to molecular imaging techniques. In this paper, we introduce various methods for preparation of iron oxide nanoparticle combined with radioisotope starting from various synthesis methods of iron oxide nanoparticles to utilize iron oxide nanoparticles as a platform for molecular imaging through radioactive labeling.

흡착공정 개발을 위한 다중규모 모사: 활성탄에서의 n-Hexane 흡착에 관한 사례연구 (Multiscale Simulation for Adsorption Process Development: A Case Study of n-Hexane Adsorption on Activated Carbon)

  • 손혜정;임영일;유경선
    • Korean Chemical Engineering Research
    • /
    • 제46권6호
    • /
    • pp.1087-1094
    • /
    • 2008
  • 본 연구는 활성탄을 사용한 n-hexane의 흡착공정에 있어서 분자수준에서 시작하여 공정단계에 이르는 다중규모 모사에 관하여 기술한다. 분자모사에서는 GCMC(Grand Canonical Monte Carlo) 방법을 이용하여 활성탄에서 n-hexane의 등온흡착식을 예측하고, 2차원 전산유체역학(CFD; Computational fluid dynamics) 모사를 통하여 흡착컬럼 내 유체흐름에 대한 수력학적 특성을 파악한다. 공정모사단계에서는 분자모사 및 유체역학 모사에서 각각 얻은 등온흡착식과 축방향 확산계수값을 이용하여 n-hexane의 용출곡선을 얻는다. 이러한 3단계 다중규모 모사기법을 활용하여 얻은 공정모사 결과는 펄스응답의 실험결과와 비교해볼 때, 온도와 유량변화에 따른 1차 모멘트(평균 체류시간)에 관하여 약 20% 미만의 오차범위에서 일치함을 확인할 수 있다. 이 결과로부터 분자수준에서 시작하는 다중규모 모사는 필요한 실험횟수를 줄이면서 흡착공정 개발을 가속화할 수 있는 가능성을 보여준다.

Synthetic approaches toward [18F]Fluoromisonidazole as a hypoxia imaging maker

  • Kwon, Young-Do;Lim, Seok Tae;Jeong, Hwan-Jeong;Sohn, Myung-Hee;Kim, Hee-Kwon
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.9-14
    • /
    • 2015
  • Hypoxia has been shown in many tumors because of a reduced oxygen condition. A useful approach to detect hypoxia is to use molecular imaging. Positron emission tomography (PET), one of the biomedical molecular imaging tools, is the most common non-invasive technique for providing information about physiological and biological events such as diseases. In order to use the PET technique for healthcare, promising molecular probes such as PET tracers required. [$^{18}F$]Fluoromisonidazole ([$^{18}F$]FMISO) is the most widely used in PET tracers for hypoxia. In this review, major developments of the synthetic method of [$^{18}F$]FMISO are discussed.

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.