Browse > Article
http://dx.doi.org/10.22643/JRMP.2018.4.1.36

Preparation of iron oxide nanoparticle combined with radioisotope for molecular imaging  

Park, Ji Yong (Department of Nuclear Medicine, Seoul National University College of Medicine)
Lee, Yun-Sang (Department of Nuclear Medicine, Seoul National University Hospital)
Jeong, Jae Min (Department of Nuclear Medicine, Seoul National University College of Medicine)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.4, no.1, 2018 , pp. 36-42 More about this Journal
Abstract
Molecular imaging refers to detect the biochemical process in living organisms at the cellular and molecular levels and to quantify them. Due to several advantages of nanomaterials, various molecular images using nanomaterials are being tried. Attempts have been made to combine nanoparticles, known as micro- or nanosized nanomaterials, with radioactive isotopes for molecular imaging probe. The radiolabeled nanoparticles will expend the molecular imaging due to nanoparticle's size-dependent nature. In particular, iron oxide nanoparticles can be used for magnetic resonance imaging, can be adjusted in size, easily functionalized, and biocompatible, making it a very good platform for molecular imaging. In addition, iron oxide nanoparticles may be the best example for a new approach to molecular imaging techniques. In this paper, we introduce various methods for preparation of iron oxide nanoparticle combined with radioisotope starting from various synthesis methods of iron oxide nanoparticles to utilize iron oxide nanoparticles as a platform for molecular imaging through radioactive labeling.
Keywords
Nanoparticle; Radioisotope; Labeling method; PET; MRI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu T, Johnsen B, Qin Z, Morimoto M, Baillie D, Irie M. Two-colour fluorescent imaging in organisms using self-assembled nano-systems of upconverting nanoparticles and molecular switches. Nanoscale 2015;7:11263-11266.   DOI
2 Edmonds S, Volpe A, Shmeeda H, Parente-Pereira AC, Radia R, Baguna-Torres J. Exploiting the metalchelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomalnanomedicines. ACS nano 2016;10:10294-10307.   DOI
3 Duan Y, Wei L, Petryk J, Ruddy TD. Formulation, characterization and tissue distribution of a novel pHsensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery. Int J Nanomedicine 2016;11:5697-5708.   DOI
4 Huang Y, Coman D, Hyder F, Ali MM. Dendrimerbased responsive MRI contrast agents (G1–G4) forbiosensor imaging of redundant deviation in shifts (BIRDS). Bioconjugate chem 2015;26:2315-2323.   DOI
5 Mendoza-Nava H, Ferro-Flores G, Ramirez FdM, Ocampo-Garcia B, Santos-Cuevas C, Azorin-VegaE. Fluorescent, plasmonic, and radiotherapeutic properties of the 177Lu–Dendrimer-AuNP–Folate–Bombesin nanoprobe located inside cancer cells. Mol Imaging 2017;16:1536012117704768.
6 Budhathoki-Uprety J, Langenbacher RE, Jena PV, Roxbury D, Heller DA. A Carbon nanotube optical sensor reports nuclear entry via a noncanonical pathway. ACS nano 2017;11:3875-3982.   DOI
7 Rainone P, Riva B, Belloli S, Sudati F, Ripamonti M, Verderio P, et al. Development of $^{99m}Tc-radiolabeled$ nanosilica for targeted detection of HER2-positive breast cancer. Int J Nanomedicine 2017;12:3447-3461.   DOI
8 Gwyther MM, Field E. Aggregated 99m Tc-labelled albumin for lung scintiscanning. Int J Appl radiat isot1966;17:485-486.   DOI
9 Liu X, Chen C, Zhao Y, Jia B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomat 2013;2013.
10 Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995-4021.   DOI
11 Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics 1981;17:1247-1248.   DOI
12 Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat mat 2004;3:891-895.   DOI
13 Lassenberger A, Grunewald T, Van Oostrum P, Rennhofer H, Amenitsch H, Zirbs R, et al. Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle x-ray scattering. Chem Mater 2017;29:4511-4522.   DOI
14 Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, et al. Synthesis of phase-pureand monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015;7:11142-11154.   DOI
15 Salinas B, Ruiz-Cabello J, Morales M, Herranz F. Olefin metathesis for the functionalization of superparamagnetic nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials 2012;1:166-172.   DOI
16 Wang W-W, Zhu Y-J, Ruan M-L. Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 2007;9:419-426.   DOI
17 Alexander V. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem Rev 1995;95:273-342.   DOI
18 Madru R, Kjellman P, Olsson F, Wingardh K, Ingvar C, Stahlberg F. $^{99m}Tc-labeled$ superparamagnetic iron Oxide Nanoparticles for Multimodality SPECT/MRI of Sentinel Lymph Nodes. J Nucl Med 2012;53:459-463.   DOI
19 Lahooti A, Sarkar S, Laurent S, Shanehsazzadeh S. Dual nano-sized contrast agents in PET/MRI: a systematic review. Contrast Media Mol Imaging 2016;11:428-447.   DOI
20 Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C. Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem 2012;12:2694-702.
21 Misri R, Meier D, Yung AC, Kozlowski P, Hafeli UO. Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe. Nanomedicine 2012;8:1007-1016.   DOI
22 Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOXconjugated, and $^{64}Cu-labeled$ superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011;32:4151-4160.   DOI
23 Morin G, Wang Y, Ona-Nguema G, Juillot F, Calas G, Menguy N. EXAFS and HRTEM evidence for As (III)-containing surface precipitates on nanocrystalline magnetite: implications for As sequestration. Langmuir 2009;25:9119-9128.   DOI
24 Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S. Chelator-free synthesis of a dual-modalityPET/MRI agent. Angew Chem Int Ed 2013;52:13319-13323.   DOI
25 Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M. Development of a nano-zirconia based $^{68}Ge/^{68}Ga$ generator for biomedical applications. Nucl Med Biol 2011;38:575-583.   DOI
26 Evertsson M, Kjellman P, Cinthio M, Andersson R, Tran TA, Grafstrom G. Combined magnetomotive ultrasound, PET/CT, and MR imaging of $^{68}Ga-labelled$ superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci Rep 2017;7:4824.   DOI
27 Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and invivo dual-modality PET/MR imaging. Adv Mater 2014;26:5119-123.   DOI
28 Pham TN, Lengkeek NA, Greguric I, Kim BJ, Pellegrini PA, Bickley SA. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles. Int J NanoMed 2017;12:899-909.   DOI
29 Madru R, Tran TA, Axelsson J, Ingvar C, Bibic A, Stahlberg F. $^{68}Ga-labeled$ superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging 2014;4:60-69.
30 Pellico J, Ruiz-Cabello J, Saiz-Alia M, Rosario G, Caja S, Montoya M. Fast synthesis and bioconjugation of $^{68}Ga core-doped$ extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol Imaging 2016;11:203-210.   DOI
31 Wong RM, Gilbert DA, Liu K, Louie AY. Rapid sizecontrolled synthesis of dextran-coated, $^{64}Cu-doped$ iron oxide nanoparticles. ACS Nano 2012;6:3461-3467.   DOI
32 Campbell JL, SoRelle ED, Ilovich O, Liba O, James ML, Qiu Z. Multimodal assessment of SERS nanoparticle biodistribution post ingestion reveals new potential for clinical translation of Raman imaging. Biomaterials 2017;135:42-52.   DOI
33 Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C, Chambon V. Quantum dot-loaded monofunctionalized DNA icosahedra for singleparticle tracking of endocytic pathways. Nat Nanotech 2016;11:1112-1119..   DOI
34 Wichner SM, Mann VR, Powers AS, Segal MA, Mir M, Bandaria JN. Covalent protein labeling and improvedsingle-molecule optical properties of aqueous CdSe/CdS quantum dots. ACS Nano 2017;11:6773-6781.   DOI
35 Song J, Yang X, Yang Z, Lin L, Liu Y, Zhou Z. Rational design of branched nanoporous gold nanoshells withenhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano 2017;11:6102-6113.   DOI
36 Park HS, Nam SH, Kim J, Shin HS, Suh YD, Hong KS. Clear-cut observation of clearance of sustainable upconverting nanoparticles from lymphatic system of small living mice. Scientific reports 2016;6:27407.   DOI