• Title/Summary/Keyword: Molecular Surface

Search Result 2,086, Processing Time 0.031 seconds

Photocatalytic Epoxidation of Olefins Using Molecular O2 by TiO2 Incorporated in Hydrophobic Y Zeolite

  • Kuwahara, Yasutaka;Magatani, Yasuhiro;Yamashita, Hiromi
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.19-21
    • /
    • 2015
  • Zeolite is an ideal host material for encapsulating nano-size metal catalyst species because of its defined microporous structure, prominent adsorption/condensation properties, high surface area, chemical/thermal stability, and transparency to light. In this study, $TiO_2$ photocatalyst was incorporated in highly hydrophobic Y zeolite and its photocatalytic activity was examined in the photocatalytic oxidation of olefins under UV-light irradiation using molecular oxygen as an oxygen source. $TiO_2$ nanoparticles incorporated in hydrophobic Y zeolite exhibited a markedly enhanced photocatalytic activity compared with bare $TiO_2$ owing to its excellent affinity toward organic moieties, which facilitates the mass transfer of organic substrates and allows them to efficiently access to the neighboring active $TiO_2$ surface.

Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions III. Kinetic Energies in Ni (100) layers (산란 및 투과된 수소 이온의 분자 전산 연구 III. 니켈 (100) 표면 층의 운동에너지)

  • Suh, Soong-Hyuck;Min, Woong-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.191-199
    • /
    • 2001
  • In this paper molecular dynamics simulations have been carried out to investigate energy and momentum transfer of hydrogen ions impacted on the Ni (100) surface with $45^{\circ}$ and $90^{\circ}$ incident angles. The initial kinetic energies of the hydrogen ion were ranged from 100 eV to 1,600 eV to study the layer-by-layer energy variation as a dependence of incident energies and angles. At low incident energies, the scattering energy transfer is dominated by the normal motion of surface layers due to thermal vibrations and multiple collision effects. For higher incident energies, the scattering energy transfer in a normal direction is greater than that in a parallel direction. In the case of penetration, the amount of transferred energies do not affect much on Ni layers at low incident energy. It was found channeling effects through Ni layers with increasing incident energies.

  • PDF

Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions II. 45° Incident Angle to Ni (100) Surface (산란 및 투과된 수소 이온의 분자 전산 연구 II. 니켈 (100) 표면의 45° 입사)

  • Suh, Soong-Hyuck;Min, Woong-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • In this paper molecular dynamics simulations were employed to investigate the structural and dynamic properties of hydrogen ions impacted on the Ni (100) surface with the $45^{\circ}$ incident angle. The initial kinetic energies of the hydrogen ion range from 100 to 1,600 eV. Together with the trajectory visualization of hydrogen ions, we computed scattering and penetration yields, mean energies and angles, and probability and energy distributions as a function of longitudinal and azimuthal directions. In the case of lower energy scattering ions, the multiple collision effects were found to be important to the third layers or lower. For higher energy penetrating ions, compared with the normal incident angle, it was significant the effective channeling effects through the Ni layers and the angle dependencies were indicated both in the longitudinal and the azimuthal angle directions.

  • PDF

Development of High-Performance Organic Field-Effect Transistors via Surface-Mediated Molecular Ordering

  • Cho, Kil-Won;Kim, Do-Hwan;Park, Yeong-Don;Jang, Yun-Seok;Hwang, Min-Kyu;Lee, Hwa-Sung;Lim, Jung-Ah
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.147-148
    • /
    • 2005
  • We report on high-performance organic field-effect transistors by promoting surface-mediated two-dimensional molecular ordering in organic semiconductor. To achieve this goal, we have controlled the intermolecular interaction at the interface between organic semiconductor and the insulator substrate.

  • PDF

Vapor-liquid Interface of Argon by Using a Test-area Simulation Method

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.167-170
    • /
    • 2012
  • A test-area molecular dynamics simulation method for the vapor-liquid interface of argon through a Lennard-Jones intermolecular potential is presented in this paper as a primary study of interfacial systems. We found that the calculated density profile along the z-direction normal to the interface is not changed with time after equilibration and that the values of surface tension computed from this test-area method are fully consistent with the experimental data. We compared the thermodynamic properties of vapor argon, liquid argon, and argon in the vapor-liquid interface. Comparisons are made with kinetic and potential energies, diffusion coefficient, and viscosity.

Structure-Activity Relationship. A Theoretical Study of Catechol Derivatives as 5-Lipoxygenase Inhibitor (구조-활성 상관관계. 5-Lipoxygenase의 저해제인 Catechol류에 관한 이론적 연구)

  • Park, Seongsik;Kim, Sang-Yun;Chung, Duk-Young;Yoh, Soo-Dong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.741-748
    • /
    • 1995
  • Various catechol derivatives inhibiting 5-lipoxygenase were studied with theoretical calculations and QSAR study. It was hypothesized that receptor site model could accept the active site of the catechol derivatives. The molecular length, molecular surface area, C5 net charge, HOMO/LUMO energy, van der Waals surface area and volume were used as variables to find the relationships between activity and physicochemical parameters.

  • PDF

Refinement of Protein NMR Structure under Membrane-like Environments with an Implicit Solvent Model

  • Jee, Jun-Goo;Ahn, Hee-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1139-1142
    • /
    • 2009
  • Refinement of NMR structures by molecular dynamics (MD) simulations with a solvent model has improved the structural quality. In this study, we applied MD refinement with the generalized Born (GB) implicit solvent model to protein structure determined under membrane-like environments. Despite popularity of the GB model, its applications to the refinement of NMR structures of hydrophobic proteins, in which detergents or organic solvents enclose proteins, are limited, and there is little information on the use of another GB parameter for these cases. We carried out MD refinement of crambin NMR structure in dodecylphosphocholine (DPC) micelles (Ahn et al., J. Am. Chem. Soc. 2006, 128, 4398-4404) with GB/Surface area model and two different surface tension coefficients, one for aquatic and the other for hydrophobic conditions. Our data show that, of two structures by MD refinement with GB model, the one refined with the parameter to consider hydrophobic condition had the better qualities in terms of precision and solvent accessibility.

Dielectric Relaxation Properties of Organic Ultra Thin Films for Nanotechnology (나노기술을 위한 유기초박막의 유전완화특성)

  • Cho, Su-Young;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.9-13
    • /
    • 2004
  • In this paper, evaluation of physical properties about dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DLPC, DMPC using pressure stimulus. As a result, the changed surface pressure, displacement current and the transition forms of dipole moment of phospolipid monomolecular in area per molecular by pressure stimulus were conformed well. It was known that the monolayers by linear relationship for decision of dielectric relaxation time between compressure speed and molecule area By according to the linear relationship relation get that frictional constant, DLPC was $1.89{\times}10^{-19}$[Js] and DMPC was $0.722{\times}10^{-19}$[Js]. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area.

  • PDF

Dynamic Analysis of Spatial Multiscale Models (공간적 멀티스케일 모델의 동적 해석)

  • Kim, Sung-Youb;Park, Jong-Youn;Cho, Young-Sam;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.547-550
    • /
    • 2004
  • We present a multiscale scheme which describes the dynamic pictures of atoms in the multiple length-scale systems. Large-scale atomic systems are reduced to coarse grained system by the quasicontinuum, of which the dynamic pathways are rendered by the action-derived molecular dynamics proved effective for multiple time-scale problems such as rare events. Adatom diffusions on the metal (001) surface are selected for our numerical examples. The energy barriers of the diffusions and the real dynamic trajectories of the adatoms are calculated.

  • PDF

Langmuir-Blodgett Methods and Photelectronic Devices (Langmuir Blodgett법에 의한 광전자소자)

  • 신동명
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.108-113
    • /
    • 1991
  • This paper describes the necessity and utility of Langmuir-Blodgett (L-B) methods in developing molecular electronic devices. It also covers the application area and limitations of the methods. With L-B methods, the membrane thickness can be controlled in a range of 50 nm and 1000 nm depending on nature of the materials and layering methods. The molecular arrangement within the membrane can be altered by altering the surface pressure and nature of the layering materials. Such a variation can be altered by altering the surface pressure and nature of the layering materials. Such a variation can offer a new application of the methods to the future electronic devices. More over 2nd and 3rd nonlinearity generated in the nonsymmetric thin membrane will be used in the development of the optoelectronic devices.

  • PDF