Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.1.167

Vapor-liquid Interface of Argon by Using a Test-area Simulation Method  

Lee, Song-Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
A test-area molecular dynamics simulation method for the vapor-liquid interface of argon through a Lennard-Jones intermolecular potential is presented in this paper as a primary study of interfacial systems. We found that the calculated density profile along the z-direction normal to the interface is not changed with time after equilibration and that the values of surface tension computed from this test-area method are fully consistent with the experimental data. We compared the thermodynamic properties of vapor argon, liquid argon, and argon in the vapor-liquid interface. Comparisons are made with kinetic and potential energies, diffusion coefficient, and viscosity.
Keywords
Vapor-liquid interface; Test-area method; Surface tension; Molecular dynamics simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Zhou, D.; Zeng, M.; Mi, J.; Zhong, C. J. Phys. Chem. B 2011, 115, 57.   DOI   ScienceOn
2 Lee, J. K.; Barker, J. K. J. Chem. Phys. 1974, 60, 1976.   DOI
3 Janecek, J. J. Phys. Chem. B 2006, 110, 6264.   DOI   ScienceOn
4 Nicholson, D.; Parsonage, N. G. Computer Simulation and Statistical Mechanics of Adsorption; London: Academic: 1982.
5 Shelley, J. C.; Shelly, M. Y. Curr. Opin. Colloid Interface Sci. 2000, 5, 101.   DOI   ScienceOn
6 Tobias, D. J.; Tu, K. C.; Klein, M. L. Curr. Opin. Colloid Interface Sci. 1997, 2, 15.   DOI   ScienceOn
7 Saiz, L.; Klein, M. L. Acc. Chem. Res. 2002, 35, 482.   DOI   ScienceOn
8 Martin del Rio, E.; de Miguel, E. Phys. Rev. E 1997, 55, 2916.   DOI   ScienceOn
9 Bates, M.; Zannoni, C. Chem. Phys. Lett. 1997, 280, 40.   DOI   ScienceOn
10 Mills, S. J.; Care, C. M.; Near, M. P.; Cleaver, D. J. Phys. Rev. E 1998, 58, 3284.   DOI   ScienceOn
11 de Miguel, E.; Martin del Rio, E. Int. J. Mod. Phys. C. 1999, 10, 431.   DOI
12 Bennet, C. H. J. Comput. Phys. 1976, 22, 245.   DOI   ScienceOn
13 Akino, N.; Schmid, F.; Allen, M. P. Phys. Rev. E 2001, 63, 041706.   DOI
14 Galindo, A; Haslam, A. J.; Varga, S.; Jackson, G.; Vanakaras, A.; Photinos, D. J.; Dunmur, D. A. J. Chem. Phys. 2004, 121, 12740.   DOI   ScienceOn
15 Gloor, G. J.; Jackson, G.; Blas, F. J.; de Miguel, E. J. Chem. Phys. 2005, 123, 134703.   DOI   ScienceOn
16 Binder, K. Phys. Rev. A 1982, 25, 1699.   DOI
17 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford: Oxford Univ. Press: 1987; p 64.
18 Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637.   DOI
19 Hoover, W. G. Phys. Rev. A 1985, 31, 1695.   DOI   ScienceOn
20 Nose, S. Mol. Phys. 1984, 52, 255.   DOI   ScienceOn
21 Lee, S. H. Bull. Kor. Chem. Soc. 2007, 28, 1371.   DOI   ScienceOn
22 NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/ fluid (accessed 2011).
23 van der Waals, J. D. Z. Phys. Chem. 1894, 13, 657.
24 Rowlinson, J. S.; Widom, B. Theory of Capillarity; Oxford: Clarendon: 1982.
25 Henderson, D. Fundamentals of Inhomogeneous Fluids; New York: Dekker: 1992.
26 Davis, H. T. Statistical Mechanics of Phases, Interfaces, and Thin Films; Weinheim: VCH: 1996.
27 English translation, Rowlinson, J. S. J. Stat. Phys. 1979, 20, 197.   DOI   ScienceOn