• Title/Summary/Keyword: Molecular Structure

Search Result 3,506, Processing Time 0.027 seconds

Molecular and Crystal Structure of' Metalaxyl, $C_{15}H_{21}NO_4$ (Metalaxyl, $C_{15}H_{21}NO_4$의 분자 및 결정구조)

  • Keun Il Park;Young Kie Kim;Sung Il Cho;Man Hyung Yoo
    • Korean Journal of Crystallography
    • /
    • v.13 no.3_4
    • /
    • pp.148-151
    • /
    • 2002
  • The molecular and crystal structure of metalaxyl C/sub15/H/sub21/NO₄, was determined by single crystal x-ray diffraction study. Crystallographic data for, title compound P2₁/c, a=7.849(4) Å, b=13.081(5) Å, c=15.100(3) Å, β=101.8(2)°, V= 1517.6(3) ų, Z=4. The molecular. Structure model was solved by direct method and refined by full-matrix least- squares. The final reliable factor, R, is 0.067 for 1694 independent reflections (F/sub o//sup 2/>4σ(F/sub o//sup 2/)). The molecular structure of title compound shows an intramolecular hydrogen bond: Cl2-Hl2A…O1.

GMR in Multilayers with an Alternating In-plane and Perpendicular Anisotropy

  • Stobiecki, F.;Szymanski, B.;Lucinski, T.;Dubowik, J.;Urbaniak, M.;Roll, K.;Kim, J.B;Kim, K.W;Lee, Y.P
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.40-46
    • /
    • 2004
  • The magnetic properties of sputtered ($Ni_{83}Fe_{17}/Au/Co/Au$) multilayers with various thicknesses of Au (0.5 {\leq} t_{Au} {\leq} 3 nm), Ni-Fe ($1{\leq}t_{Ni-Fe}{\leq}4nm$) and Co ($0.2{\leq}t_{co}{\leq}1.5nm$) layers were characterized. An alternating in-plane and out-of-plane anisotropy of the ferromagnetic layers was achieved for the structures ($t_{Au}{\geq}1.5nm$) showing a weak coupling between the Ni-Fe layers with an in-plane anisotropy and the Co layers ($0.3{\leq}t_Co{\leq}1.2nm$) with a perpendicular anisotropy. For such a structure, a detailed discussion on the GMR effect is presented, relating to the magnetization reversal from a mutually perpendicular magnetic configuration at the remanence to a parallel one at the saturation. An influence of the dense labyrinth domain structure on the magnetoresistance effect is also addressed.

Expression and Purification of a Cathelicidin-Derived Antimicrobial Peptide, CRAMP

  • Park Eu-Jin;Chae Young-Kee;Lee Jee-Young;Lee Byoung-Jae;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1429-1433
    • /
    • 2006
  • Application of recombinant protein production and particularly their isotopic enrichment has stimulated development of a range of novel multidimensional heteronuclear NMR techniques. Peptides in most cases are amenable to assignment and structure determination without the need for isotopic labeling. However, there are many cases where the availability of $^{15}N$ and/or $^{13}C$ labeled peptides is useful to study the structure of peptides with more than 30 residues and the interaction between peptides and membrane. CRAMP (Cathelicidin-Related AntiMicrobial Peptide) was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. CRAMP was successfully expressed as a GST-fused form in E. coli and purified using affinity chromatography and reverse-phase chromatography. The yield of the CRAMP was 1.5 mg/l 1. According to CD spectra, CRAMP adopted ${\alpha}$-helical conformation in membrane-mimetic environments. Isotope labeling of CRAMP is expected to make it possible to study the structure and dynamic properties of CRAMP in various membrane systems.

Structure and Function of HtrA Family Proteins, the Key Players in Protein Quality Control

  • Kim, Dong-Young;Kim, Kyeong-Kyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.266-274
    • /
    • 2005
  • High temperature requirement A (HtrA) and its homologues constitute the HtrA familiy proteins, a group of heat shock-induced serine proteases. Bacterial HtrA proteins perform crucial functions with regard to protein quality control in the periplasmic space, functioning as both molecular chaperones and proteases. In contrast to other bacterial quality control proteins, including ClpXP, ClpAP, and HslUV, HtrA proteins contain no regulatory components or ATP binding domains. Thus, they are commonly referred to as ATP-independent chaperone proteases. Whereas the function of ATP-dependent chaperone-proteases is regulated by ATP hydrolysis, HtrA exhibits a PDZ domain and a temperature-dependent switch mechanism, which effects the change in its function from molecular chaperone to protease. This mechanism is also related to substrate recognition and the fine control of its function. Structural and biochemical analyses of the three HtrA proteins, DegP, DegQ, and DegS, have provided us with clues as to the functional regulation of HtrA proteins, as well as their roles in protein quality control at atomic scales. The objective of this brief review is to discuss some of the recent studies which have been conducted regarding the structure and function of these HtrA proteins, and to compare their roles in the context of protein quality control.

DED Interaction of FADD and Caspase-8 in the Induction of Apoptotic Cell Death

  • Park, Young-Hoon;Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1034-1040
    • /
    • 2022
  • Fas-associated death domain (FADD) is an adapter molecule that bridges the interaction between receptor-interacting protein 1 (RIP1) and aspartate-specific cysteine protease-8 (caspase-8). As the primary mediator of apoptotic cell death, caspase-8 has two N-terminal death-effector domains (DEDs) and it interacts with other proteins in the DED subfamily through several conserved residues. In the tumor necrosis receptor-1 (TNFR-1)-dependent signaling pathway, apoptosis is triggered by the caspase-8/FADD complex by stimulating receptor internalization. However, the molecular mechanism of complex formation by the DED proteins remains poorly understood. Here, we found that direct DED-DED interaction between FADD and caspase-8 and the structure-based mutations (Y8D/I128A, E12A/I128A, E12R/I128A, K39A/I128A, K39D/I128A, F122A/I128A, and L123A/I128A) of caspase-8 disrupted formation of the stable DED complex with FADD. Moreover, the monomeric crystal structure of the caspase-8 DEDs (F122A/I128A) was solved at 1.7 Å. This study will provide new insight into the interaction mechanism and structural characteristics between FADD and caspase-8 DED subfamily proteins.

The Theoretical Studies for the (Molecular Connectivity법에 의하여 발암성 Benzenoid 탄화수소의)

  • Ui Rak Kim;Jong Guk Eun;Myung-Jae Lee;Kim Sang Hae
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.153-161
    • /
    • 1987
  • The carcinogenicity of benzenoid hydrocarbons apparently depends strongly on the topological nature of the molecule. The existance of certain regions in the structure which are known propensity of benzenoid hydrocarbons to be carcinogenic. We try to identify the correlation between the number of potentially carcinogenic bay region in each of them and the quantity of Molecular Connectivity Index for 81 benzenoid hydrocarbons. Results indicate an excellent linear correlation between the number of bay region and the quantity of molecular connectivity index except the molecular containing single bond in their structure.

  • PDF

Molecular structure effects of the pitches on preparation of activated carbon fibers from electrospinning

  • Kim, Bo-Hye;Wazir, Arshad Hussain;Yang, Kap-Seung;Bang, Yun-Hyuk;Kim, Sung-Ryong
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2011
  • Two pitches with different average molecular structures were electrospun and compared in terms of the properties of their fibers after oxidative stabilization, carbonization, and activation. The precursor with a higher molecular weight and greater content of aliphatic groups (Pitch A) resulted in better solubility and spinnability compared to that with a lower molecular weight and lower aliphatic group content (Pitch B). The electrical conductivity of the carbon fiber web from Pitch A of 67 S/cm was higher than that from Pitch B of 52 S/cm. The carbon fiber web based on Pitch A was activated more readily with lower activation energy, resulting in a higher specific surface area compared to the carbon fiber based on Pitch B (Pitch A, 2053 $m^2/g$; Pitch B, 1374 $m^2/g$).