DOI QR코드

DOI QR Code

GMR in Multilayers with an Alternating In-plane and Perpendicular Anisotropy

  • Stobiecki, F. (Institute of Molecular Physics Polish Academy of Sciences) ;
  • Szymanski, B. (Institute of Molecular Physics Polish Academy of Science) ;
  • Lucinski, T. (Institute of Molecular Physics Polish Academy of Science) ;
  • Dubowik, J. (Institute of Molecular Physics Polish Academy of Science) ;
  • Urbaniak, M. (Institute of Molecular Physics Polish Academy of Science) ;
  • Roll, K. (University Gh-Kasse) ;
  • Kim, J.B (q-Psi and Department of Physics, Hanyang University) ;
  • Kim, K.W (q-Psi, Hanyang University, and Dept. of Physics, Sunmoon University) ;
  • Lee, Y.P (q-Psi and Department of Physics, Hanyang University)
  • Published : 2004.06.01

Abstract

The magnetic properties of sputtered ($Ni_{83}Fe_{17}/Au/Co/Au$) multilayers with various thicknesses of Au (0.5 {\leq} t_{Au} {\leq} 3 nm), Ni-Fe ($1{\leq}t_{Ni-Fe}{\leq}4nm$) and Co ($0.2{\leq}t_{co}{\leq}1.5nm$) layers were characterized. An alternating in-plane and out-of-plane anisotropy of the ferromagnetic layers was achieved for the structures ($t_{Au}{\geq}1.5nm$) showing a weak coupling between the Ni-Fe layers with an in-plane anisotropy and the Co layers ($0.3{\leq}t_Co{\leq}1.2nm$) with a perpendicular anisotropy. For such a structure, a detailed discussion on the GMR effect is presented, relating to the magnetization reversal from a mutually perpendicular magnetic configuration at the remanence to a parallel one at the saturation. An influence of the dense labyrinth domain structure on the magnetoresistance effect is also addressed.

Keywords

References

  1. Sensors and Actuators A v.91 P.Grunberg https://doi.org/10.1016/S0924-4247(01)00513-1
  2. J. Magn. Magn. Mater. v.136 B.Dieny https://doi.org/10.1016/0304-8853(94)00356-4
  3. J. Magn. Magn. Mater. v.239 F.Stobiecki;B.Szymanski;T.Lucinski;J.Dubowik;K.Roll https://doi.org/10.1016/S0304-8853(01)00690-4
  4. J. Magn. Magn. Mager. v.272-276S F.Stobiecki;B.Szymanski;T.Lucinski;J.Dubowik;M.Urbaniak;M.Schmidt;K.Roll
  5. Nanoelectronics and Information Technology A.Dietzel;R.Waser(ed.)
  6. Phys. Rev. B v.34 C.Chappert;K. Le Dang;P.Beauvillain;H.Hurdequint;D.Renard https://doi.org/10.1103/PhysRevB.34.3192
  7. Phys. Rev. B v.57 J.Dubowik;F.Stobiecki;T.Lucinski https://doi.org/10.1103/PhysRevB.57.5955
  8. J. Magn. Magn. Mater. v.240 F.Albertini;G.Carlotti;F.Casoli;G.Gubbiotti;H.Koo;R.D.Gomez https://doi.org/10.1016/S0304-8853(01)00837-X
  9. Phys. Stat. Sol. (a) v.196 J.Dubowik;F.Stobiecki;I.Gooecianska https://doi.org/10.1002/pssa.200306348
  10. Phys. Rev. B v.49 D.Barlett;F.Tsui;D.Glick;L.Lauhon;T.Mandrekar;C.Uher;R.Clarke https://doi.org/10.1103/PhysRevB.49.1521
  11. Phys. Stat. Sol. (a) v.163 T.Lucinski;F.Stobiecki https://doi.org/10.1002/1521-396X(199709)163:1<195::AID-PSSA195>3.0.CO;2-D
  12. J. Magn. Magn. Mater. v.219 T.Lucinski https://doi.org/10.1016/S0304-8853(00)00464-9
  13. Phys. Rev. B v.44 B.Voigtlander;G.Meyer;N.M.Amer https://doi.org/10.1103/PhysRevB.44.10354
  14. Phys. Rev. B v.59 S.Padovani;I.Chado;F.Scheurer;J.P.Bucher https://doi.org/10.1103/PhysRevB.59.11887
  15. J. Magn. Magn. Mater. v.174 T.Lucinski;F.Stobiecki;D.Elefant;D.Eckert;G.Reiss;B.Szymanski;J.Dubowik;M.Schmidt;H.Rohrmann;K.Roll https://doi.org/10.1016/S0304-8853(97)00217-5
  16. J. Phys. D: Condens. Mater v.13 A.D.Kent;J.Yu;U.Rudiger;S.S.P.Parkin https://doi.org/10.1088/0953-8984/13/25/202
  17. Phys. Rev. Lett. v.84 L.Thomas;M.G.Samant;S.S.P.Parkin https://doi.org/10.1103/PhysRevLett.84.1816

Cited by

  1. Manipulation of superparamagnetic beads on patterned Au/Co/Au multilayers with perpendicular magnetic anisotropy vol.120, pp.8, 2016, https://doi.org/10.1063/1.4961496