• Title/Summary/Keyword: Molecular Spectroscopy

Search Result 827, Processing Time 0.028 seconds

A Comparison of Three Dimensional Structures of Insulin, Proinsulin and Preproinsulin Using Computer Aided Molecular Modeling

  • Oh, Mi-Na;Mok, Hun;Lim, Yoong-Ho
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.568-571
    • /
    • 1998
  • The conformations of human insulin precursors, proinsulin and preproinsulin, are described in terms of molecular dynamics simulations. Despite the presence of the C-peptide and/or the signal peptide, molecular dynamics calculations utilizing the hydration shell model over a period of 500 ps indicate that the native conformations of the A and B chains are well conserved in both cases. These results further support the NMR spectroscopy results that the C-peptide is relatively disordered and does not influence the overall conformation of the native structure. The robustness of the native structure as demonstrated by experiment and simulation will permit future protein engineering applications, whereby the expression or purification yields can be improved upon sequence modification of the C-peptide and/or the signal peptide.

  • PDF

New water-soluble hydrate formers (새로운 수용성 하이드레이트 형성체 연구)

  • Lee, Jong-Won;Lu, Hailong;Moudrakovski, Igor L.;Ratcliffe, Christopher I.;Ripmeester, John A.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.580-583
    • /
    • 2008
  • 다양한 고리형 에스테르 및 고리형 케톤 화합물을 시도하여 새로운 구조-II 및 구조-H 수용성 하이드레이트 형성체를 발견하였다. 이렇게 새로이 발견된 하이드레이트 형성체에 대해서는 상평형 측정 및 분광학적 분석을 수행하여 안정영역과 분자 거동을 파악하였다. 새로이 발견된 하이드레이트 형성체는 물과의 용해성이 우수하여 하이드레이트 형성이 빠른 속도로 이루어져 실제 응용 분야에서 중요하게 사용될 수 있을 것으로 전망된다.

  • PDF

Quantitative NMR Analysis of PTMEG compounds

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • PTMEG(Polytetramethylene ether glycol) is a polymer compound widely used as a wide range of applications in the textile industry. PTMEG substance carrying various 1,800~2,000 molecular weight are mainly used as the raw material of the spandex production. Molecular weight and degree of polymerization value for 4 different PTMEG samples under pilot plant scale synthetic process were determined by a new quantitative NMR method. In NMR experiments, p-toluenesulfonic acid(TSOH) was used for external standard material of PTMEG quantitative analysis. were measuring The concentration of the primary standard TSOH was measured by UV/Vis spectroscopy. By using NMR peak assignments and the integral values of designated proton NMR peaks, We were able to measure the % composition of the synthetic PTMEG polymers, concentrations, molecular weight and the degree of polymerization that show the synthetic process of each manufacturing pilot plant. By utilizing a newly developed quantitative NMR method were able to obtain the molecular weight of PTMEG samples within 0.08 error % range.

Analysis of Hematoporphyrin Derivative by Design and Manufacture of High Resolution Charge Coupled Device in Spectrometry (분광기에 고 분해능 Charge Coupled Device의 설계 및 제작에 의한 Hematoporphyrin Derivative의 분석)

  • Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.77-83
    • /
    • 2005
  • The influence of fluorescence, scattering, and absorbance in turbid material by light scattering was interpreted by the scattered fluorescence intensity and wavelength. The effect of optical property in scattering media was investigated. It is very important to study the charge coupled device(CCD) in spectrometry because we can use the molecular energy level, molecular structure, absorption or emission, intermolecular reaction, weakly bound molecular energy, photochemistry, fluorescence and photodynamic therapy. CCD is very essential to study the molecular structure and medical engineering combined laser spectroscopy in the modem physical and chemistry. Accordingly, this study has designed and manufactured the electromagnetic spectrometry with CCD, and has analyzed the hematoporphyrin derivative.

Studies on the Characteristics of Humic Acid and its Utilizations. (II) Characteristics of humic acid (Molecular weight, molecular and rational formula. Structure) (土炭흄酸의 性狀및 應用에 關한 硏究 (第 2 報) 흄酸의 性狀)

  • Won Taik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.56-61
    • /
    • 1969
  • By the chemical procedure and infra-red spectroscopy, the characteristics of humic acid were studied. The results were as follows: 1. Molecular weight. 5,200. 2. Molecular formula. $C_{240}H_{250}O_{120}N_{1O}$. 3. Rational formula. 4. Confirmation of the accurate structure of humic acid is beyond us nowadays. The structure is speculated that it may be a kind of condensed polymer of many benzene kerns in which above mentioned various functional groups are attached. Also some part of the large quantities of oxygen would be furan type carbonyl and aliphatic ethereal forms.

  • PDF

Epitaxial Growth of Polyurea Film by Molecular Layer Deposition

  • Choe, Seong-Eun;Gang, Eun-Ji;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.2-264.2
    • /
    • 2013
  • Molecular layer deposition (MLD) is sequential, self-limiting surface reaction to form conformal and ultrathin polymer film. This technique generally uses bifunctional precursors for stepwise sequential surface reaction and entirely organic polymer films. Also, in comparison with solution-based technique, because MLD is vapor-phase deposition based on ALD, it allows epitaxial growth of molecular layer on substrate and is especially good for surface reaction or coating of nanostructure such as nanopore, nanochannel, nanwire array and so on. In this study, polyurea film that consisted of phenylenediisocyanate and phenylenediamine was formed by MLD technique. In situ Fourier Transform Infrared (FTIR) measurement on high surface area SiO2 substrate was used to monitor the growth of polyurethane and polyurea film. Also, to investigate orientation of chemical bonding formed polymer film, plan-polarized grazing angle FTIR spectroscopy was used and it showed epitaxial growth and uniform orientation of chemical bones of polyurea films.

  • PDF

High-Resolution Spectroscopy of Hydrogen Emission Lines around a Herbig star, MWC 1080 with IGRINS

  • Kim, Il-Joong;Oh, Heeyoung;Jeong, Woong-Seob;Lee, Jae-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.68.1-68.1
    • /
    • 2019
  • Using IPHAS $H{\alpha}$ data, we found bright $H{\alpha}$ regions inside the elongated $^{13}CO$ cavity around a Herbig star, MWC 1080. To investigate the ionized hydrogen regions and the molecular cavity, we perform near-IR high-resolution spectroscopic of hydrogen Brackett lines and molecular hydrogen lines by Immersion GRating INfrared Spectrograph (IGRINS) observations. We detected broad Brackett line series and sharp molecular lines with various velocity components. We present three ionized hydrogen regions (near MWC 1080A, MWC 1080E, and CO boundary) with different line widths, central radial velocities, and line ratios. We also show two spatially-separate $Br{\gamma}$ ${\lambda}2.1662{\mu}m$ peaks near MWC 1080A. To reveal a 3D structure of the cavity around MWC 1080, we try to use the detected sharp molecular lines.

  • PDF

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

What Do We Learn from Two-Dimensional Raman Spectra by Varying the Polarization Conditions?

  • Ma, Ao;Stratt, Richard M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1126-1134
    • /
    • 2003
  • The signals obtained from the $5^{th}$-order (two-dimensional) Raman spectrum of a liquid can depend dramatically on the polarizations of the various light beams, but to date there has been no evidence presented that different polarization conditions probe any fundamentally different aspects of liquid dynamics. In order to explore the molecular significance of polarization we have carried out a molecular dynamics simulation of the $5^{th}$-order spectrum of a dilute solution of CS₂ in liquid Xe, perhaps the simplest system capable of displaying a full range of polarization dependencies. By focusing on the 5 distinct rotational invariants revealed by the different polarizations and by comparing our results with those from liquid Xe, a liquid whose spectrum has no significant polarization dependence, we discovered that the polarization experiments do, in fact, yield valuable microscopic information. With different linear combinations of the experimental response functions one can separate the part of the signal derived from the purely interaction-induced part of the many-body polarizability from the portion with the largest contributions from single-molecule polarizabilities. This division does not directly address the underlying liquid dynamics, but it significantly simplifies the interpretation of the theoretical calculations which do address this issue. We find that the different linear combinations differ as well in whether they exhibit nodal lines. Despite the absence of nodes with the atomic liquid Xe, observing the resilience of our solution's nodes when we artificially remove the anisotropy of our solute leads us to conclude that there is no direct connection between nodes and specifically molecular degrees of freedom.