Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.8.1126

What Do We Learn from Two-Dimensional Raman Spectra by Varying the Polarization Conditions?  

Ma, Ao (Department of Chemistry, Brown University)
Stratt, Richard M. (Department of Chemistry, Brown University)
Publication Information
Abstract
The signals obtained from the $5^{th}$-order (two-dimensional) Raman spectrum of a liquid can depend dramatically on the polarizations of the various light beams, but to date there has been no evidence presented that different polarization conditions probe any fundamentally different aspects of liquid dynamics. In order to explore the molecular significance of polarization we have carried out a molecular dynamics simulation of the $5^{th}$-order spectrum of a dilute solution of CS₂ in liquid Xe, perhaps the simplest system capable of displaying a full range of polarization dependencies. By focusing on the 5 distinct rotational invariants revealed by the different polarizations and by comparing our results with those from liquid Xe, a liquid whose spectrum has no significant polarization dependence, we discovered that the polarization experiments do, in fact, yield valuable microscopic information. With different linear combinations of the experimental response functions one can separate the part of the signal derived from the purely interaction-induced part of the many-body polarizability from the portion with the largest contributions from single-molecule polarizabilities. This division does not directly address the underlying liquid dynamics, but it significantly simplifies the interpretation of the theoretical calculations which do address this issue. We find that the different linear combinations differ as well in whether they exhibit nodal lines. Despite the absence of nodes with the atomic liquid Xe, observing the resilience of our solution's nodes when we artificially remove the anisotropy of our solute leads us to conclude that there is no direct connection between nodes and specifically molecular degrees of freedom.
Keywords
Liquid; Nonlinear spectroscopy; Two-dimensional spectroscopy; Fifth-order Raman; Molecular dynamics;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 /
[ Denny, R. A.;Reichman, D. R. ] / Phys. Rev. E   DOI
2 /
[ Murry, R. L.;Fourkas, J. T. ] / J. Chem. Phys.   DOI   ScienceOn
3 Tokmakoff, A.; Lang, M. J.; Jordanides, X. J.; Fleming, G. R.Chem. Phys. 1998, 233, 231.   DOI   ScienceOn
4 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon Press: Oxford, U. K., 1987; pp 20-22.
5 Golonzka, O.; Demirdoven, N.; Tokmakoff, A. (preprint); Golonzka, O.; Demirdoven, N.; Khalil, M.; Tokmakoff, A. J. Chem. Phys. 2000, 113, 9893.   DOI   ScienceOn
6 Okumura, K.; Tanimura, Y. J. Chem. Phys. 1997, 107, 2267.   DOI   ScienceOn
7 Andersen, H. C. J. Comp. Phys. 1983, 52, 24.   DOI   ScienceOn
8 Ma, A.; Stratt, R. M. J. Chem. Phys. 2002, 116, 4962.   DOI   ScienceOn
9 Saito, S.; Ohmine, I. Phys. Rev. Lett. 2002, 88, 207401.   DOI   ScienceOn
10 Steffen, T.; Duppen, K. Chem. Phys. Lett. 1998, 290, 229.   DOI   ScienceOn
11 Steffen, T; Meinders, N. A. C. M.; Duppen, K. J. Phys. Chem. A 1998, 102, 4213   DOI   ScienceOn
12 Gray, C. G.; Gubbins, K. E. Theory of Molecular Fluids, Vol. 1;Clarendon Press: Oxford, U. K., 1984; p 577.
13 Mukamel, S.; Piryatinski, A.; Chernyak, V. Acc. Chem. Res. 1999,32, 145.   DOI   ScienceOn
14 Tanimura, Y.; Mukamel, S. J. Chem. Phys. 1993, 99, 9496.   DOI   ScienceOn
15 Deng, Y., Ph. D. Thesis; Brown University: 2002.
16 Jansen, T. I. C.; Snijders, J. G.; Duppen, K. J. Chem. Phys. 2000, 113, 307   DOI   ScienceOn
17 Denny, R. A.; Reichman, D. R. Phys. Rev. E 2001, 63, 065101   DOI
18 Kim, J.; Keyes, T. Phys. Rev. E 2002, 65, 061102.   DOI
19 In Ultrafast Infrared and Raman Spectroscopy; Fleming, G. R.;Blank, D. A.; Cho, M.; Tokmakoff, A.; Fayer, M. D., Eds.; MarcelDekker: New York, U. S. A., 2001.
20 Murry, R. L.; Fourkas, J. T.; Keyes, T. J. Chem. Phys. 1998, 109, 7913.   DOI   ScienceOn
21 Jansen, T. I. C.; Snijders, J. G.; Duppen, K. J. Chem. Phys. 2001, 114, 10910.   DOI   ScienceOn
22 Sherwood, A. E.; Prausnitz, J. M. J. Chem. Phys. 1964, 41, 429.   DOI
23 Barojas, J.; Levesque, D.; Quentrec, B. Phys. Rev. A 1973, 7, 1092.   DOI
24 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon Press: Oxford, U. K., 1987; pp 171
25 Frenkel, D.; McTague, J. P. J. Chem. Phys. 1980, 72, 2801.   DOI
26 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, U. K., 1987; pp 20-22. chap. 3.
27 Geiger, L. C.; Ladanyi, B. M. J. Chem. Phys. 1988, 89, 6588.   DOI
28 Denny, R. A.; Reichman, D. R. J. Chem. Phys. 2002, 116, 1987.   DOI   ScienceOn
29 Steffen, T.; Duppen, K. Chem. Phys. Lett. 1997, 273, 47.   DOI   ScienceOn
30 Steffen, T.; Duppen, K. Chem. Phys. 1998, 233, 267.   DOI   ScienceOn
31 Astinov, V.; Kubarych, K. J.; Milne, C. J.; Miller, R. J. Dwayne Chem. Phys. Lett. 2000, 327, 334.   DOI   ScienceOn
32 Fincham, D. Molecular Simulation 1993, 11, 79.   DOI   ScienceOn
33 Ma, A.; Stratt, R. M. J. Chem. Phys. 2002, 116, 4972.   DOI   ScienceOn
34 Steffen, T.; Fourkas, J. T.; Duppen, K. J. Chem. Phys. 1996, 105,7364.   DOI   ScienceOn
35 Blank, D. A.; Kaufman, L. J.; Fleming, G. R. J. Chem. Phys. 2000, 113, 771.   DOI   ScienceOn
36 Geiger, L. C.; Ladanyi, B. M. J. Chem. Phys. 1987, 87, 191   DOI
37 McMorrow, D.; Thantu, N.; Melinger, J. S.; Kim, S. K.; Lotshaw, W. T. J. Phys. Chem. 1996, 100, 10389.   DOI   ScienceOn
38 Chernyak, V.; Mukamel, S. J. Chem. Phys. 1998, 108, 5812.   DOI   ScienceOn
39 Kaufman, L. J.; Heo, J.; Fleming, G. R.; Sung, J.; Cho, M. Chem.Phys. 2001, 266, 251.   DOI   ScienceOn
40 Kaufman, L. J.; Blank, D. A.; Fleming, G. R. J. Chem. Phys.2001, 114, 2312.   DOI   ScienceOn
41 Kaufman, L. J.; Heo, J. Y.; Ziegler, L. D.; Fleming, G. R. Phys.Rev. Lett. 2002, 88, 207402.   DOI   ScienceOn
42 Astinov, V.; Kubarych, K. J.; Milne, C. J.; Miller, R. J. Dwayne Opt. Lett. 2000, 25, 853   DOI   ScienceOn
43 Geiger, L. C.; Ladanyi, B. M. Chem. Phys. Lett. 1989, 159, 413.   DOI   ScienceOn
44 Murry, R. L.; Fourkas, J. T. J. Chem. Phys. 1997, 107, 9726.   DOI   ScienceOn
45 Stassen, H.; Steele, W. A. J. Chem. Phys. 1999, 110, 7382.   DOI   ScienceOn
46 Ma, A.; Stratt, R. M. J. Chem. Phys. 2003 in press.
47 Kubarych, K. J.; Milne, C. J.; Lin, S.; Miller, R. J. Dwayne J. Chem. Phys. 2002, 116, 2016.   DOI   ScienceOn
48 Saito, S.; Ohmine, I. J. Chem. Phys. 1998, 108, 240.   DOI   ScienceOn
49 Ma, A.; Stratt, R. M. Phys. Rev. Lett. 2000, 85, 1004.   DOI   ScienceOn
50 Cao, J. S.; Yang, S. L.; Wu, J. L. J. Chem. Phys. 2002, 116, 3760.   DOI   ScienceOn
51 Kubarych, K. J.; Milne, C. J.; Lin, S.; Miller, R. J. Dwayne Appl. Phys. B - Laser Opt. 2002, 74, 107   DOI   ScienceOn