• 제목/요약/키워드: Molecular Sequencing Data

검색결과 219건 처리시간 0.032초

The future of bioinformntics

  • Gribskov, Michael
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.1-1
    • /
    • 2003
  • It is clear that computers will play a key role in the biology of the future. Even now, it is virtually impossible to keep track of the key proteins, their names and associated gene names, physical constants(e.g. binding constants, reaction constants, etc.), and hewn physical and genetic interactions without computational assistance. In this sense, computers act as an auxiliary brain, allowing one to keep track of thousands of complex molecules and their interactions. With the advent of gene expression array technology, many experiments are simply impossible without this computer assistance. In the future, as we seek to integrate the reductionist description of life provided by genomic sequencing into complex and sophisticated models of living systems, computers will play an increasingly important role in both analyzing data and generating experimentally testable hypotheses. The future of bioinformatics is thus being driven by potent technological and scientific forces. On the technological side, new experimental technologies such as microarrays, protein arrays, high-throughput expression and three-dimensional structure determination prove rapidly increasing amounts of detailed experimental information on a genomic scale. On the computational side, faster computers, ubiquitous computing systems, high-speed networks provide a powerful but rapidly changing environment of potentially immense power. The challenges we face are enormous: How do we create stable data resources when both the science and computational technology change rapidly? How do integrate and synthesize information from many disparate subdisciplines, each with their own vocabulary and viewpoint? How do we 'liberate' the scientific literature so that it can be incorporated into electronic resources? How do we take advantage of advances in computing and networking to build the international infrastructure needed to support a complete understanding of biological systems. The seeds to the solutions of these problems exist, at least partially, today. These solutions emphasize ubiquitous high-speed computation, database interoperation, federation, and integration, and the development of research networks that capture scientific knowledge rather than just the ABCs of genomic sequence. 1 will discuss a number of these solutions, with examples from existing resources, as well as area where solutions do not currently exist with a view to defining what bioinformatics and biology will look like in the future.

  • PDF

Functional PstI/RsaI Polymorphisms in the CYP2E1 Gene among South Indian Populations

  • Lakkakula, Saikrishna;Maram, Rajasekhar;Munirajan, Arasambattu Kannan;Pathapati, Ram Mohan;Visweswara, Subrahmanyam Bhattaram;Lakkakula, Bhaskar V.K.S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.179-182
    • /
    • 2013
  • Human cytochrome P4502E1 (CYP2E1) is a well-conserved xenobiotic-metabolizing enzyme expressed in liver, kidney, nasal mucosa, brain, lung, and other tissues. CYP2E1 is inducible by ethanol, acetone, and other low-molecular weight substrates and may mediate development of chemically-mediated cancers. CYP2E1 polymorphisms alter the transcriptional activity of the gene. This study was conducted in order to investigate the allele frequency variation in different populations of Andhra Pradesh. Two hundred and twelve subjects belonging to six populations were studied. Genotype and allele frequency were assessed through TaqMan allelic discrimination (rs6413419) and polymerase chain reaction-sequencing (-1295G>C and -1055C>T) after DNA isolation from peripheral leukocytes. The data were compared with other available world populations. The SNP rs6413419 is monomorphic in the present study, -1295G>C and -1055C>T are less polymorphic and followed Hardy-Weinberg equilibrium in all the populations studied. The -1295G>C and -1055C>T frequencies were similar and acted as surrogates in all the populations. Analysis of HapMap populations data revealed no significant LD between these markers in all the populations. Low frequency of $CYP2E1^*c2$ could be useful in the understanding of south Indian population gene composition, alcohol metabolism, and alcoholic liver disease development. However, screening of additional populations and further association studies are necessary. The heterogeneity of Indian population as evidenced by the different distribution of $CYP2E1^*c2$ may help in understanding the population genetic and evolutionary aspects of this gene.

Distribution of KRAS and BRAF Mutations in Metastatic Colorectal Cancers in Turkish Patients

  • Gorukmez, Orhan;Yakut, Tahsin;Gorukmez, Ozlem;Sag, Sebnem Ozemri;Karkucak, Mutlu;Kanat, Ozkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1175-1179
    • /
    • 2016
  • The results of this study demonstrate the potential prognostic and predictive values of KRAS and BRAF gene mutations in patients with colorectal cancer (CRC). It has been proven that KRAS and BRAF mutations are predictive biomarkers for resistance to anti-EGFR monoclonal antibody treatment in patients with metastatic CRC (mCRC). We demonstrated the distribution of KRAS (codons 12, 13 and 61) and BRAF (codon 600) gene mutations in 50 mCRCs using direct sequencing and compared the results with clinicopathological data. KRAS and BRAF mutations were identified in 15 (30%) and 1 (2%) patients, respectively. We identified KRAS mutations in codon 12, 13 and 61 in 73.3% (11/15), 20% (3/15) and 6.67% (1/15) of the positive patients, respectively. The KRAS mutation frequency was significantly higher in tumors located in the ascending colon (p=0.043). Thus, we found that approximately 1/3 of the patients with mCRC had KRAS mutations and the only clinicopathological factor related to this mutation was tumor location. Future studies with larger patient groups should yield more accurate data regarding the molecular mechanism of CRC and the association between KRAS and BRAF mutations and clinicopathological features.

Digital image-based plant phenotyping: a review

  • Omari, Mohammad Kamran;Lee, Jayoung;Faqeerzada, Mohammad Akbar;Joshi, Rahul;Park, Eunsoo;Cho, Byoung-Kwan
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.119-130
    • /
    • 2020
  • With the current rapid growth and increase in the world's population, the demand for nutritious food and fibers and fuel will increase. Therefore, there is a serious need for the use of breeding programs with the full potential to produce high-yielding crops. However, existing breeding techniques are unable to meet the demand criteria even though genotyping techniques have significantly progressed with the discovery of molecular markers and next-generation sequencing tools, and conventional phenotyping techniques lag behind. Well-organized high-throughput plant phenotyping platforms have been established recently and developed in different parts of the world to address this problem. These platforms use several imaging techniques and technologies to acquire data for quantitative studies related to plant growth, yield, and adaptation to various types of abiotic or biotic stresses (drought, nutrient, disease, salinity, etc.). Phenotyping has become an impediment in genomics studies of plant breeding. In recent years, phenomics, an emerging domain that entails characterizing the full set of phenotypes in a given species, has appeared as a novel approach to enhance genomics data in breeding programs. Imaging techniques are of substantial importance in phenomics. In this study, the importance of current imaging technologies and their applications in plant phenotyping are reviewed, and their advantages and limitations in phenomics are highlighted.

Evolutionary Analyses of Hanwoo (Korean Cattle)-Specific Single-Nucleotide Polymorphisms and Genes Using Whole-Genome Resequencing Data of a Hanwoo Population

  • Lee, Daehwan;Cho, Minah;Hong, Woon-young;Lim, Dajeong;Kim, Hyung-Chul;Cho, Yong-Min;Jeong, Jin-Young;Choi, Bong-Hwan;Ko, Younhee;Kim, Jaebum
    • Molecules and Cells
    • /
    • 제39권9호
    • /
    • pp.692-698
    • /
    • 2016
  • Advances in next generation sequencing (NGS) technologies have enabled population-level studies for many animals to unravel the relationships between genotypic differences and traits of specific populations. The objective of this study was to perform evolutionary analysis of single nucleotide polymorphisms (SNP) in genes of Korean native cattle Hanwoo in comparison to SNP data from four other cattle breeds (Jersey, Simmental, Angus, and Holstein) and four related species (pig, horse, human, and mouse) obtained from public databases through NGS-based resequencing. We analyzed population structures and differentiation levels for the five cattle breeds and estimated species-specific SNPs with their origins and phylogenetic relationships among species. In addition, we identified Hanwoo-specific genes and proteins, and determined distinct changes in protein-protein interactions among five species (cattle, pig, horse, human, mouse) in the STRING network database by additionally considering indirect protein interactions. We found that the Hanwoo population was clearly different from the other four cattle populations. There were Hanwoo-specific genes related to its meat trait. Protein interaction rewiring analysis also confirmed that there were Hanwoo-specific protein-protein interactions that might have contributed to its unique meat quality.

Molecular Authentication of Magnoliae Flos Using Robust SNP Marker Base on trnL-F and ndhF Region

  • Kim, Min-Kyeoung;Noh, Jong-Hun;Yan, Deok-Chun;Lee, Sanghun;Lee, Hee-Nyeong;Jin, Chi-Gyu
    • 한국자원식물학회지
    • /
    • 제28권3호
    • /
    • pp.341-349
    • /
    • 2015
  • Magnoliae Flos (Sini in Korean) is one of the most important oriental medicinal plants. In the Korean Herbal Pharmacopeia, the bud of the all species in Manolia denudate and Manolia genus were regarded as the botanical sources for ‘Sini’. Most the dried bud of Manolia denudata, Manolia biondii and Manolia sprengeri were used as ‘Xin-yi’ in China. Therefore, the purpose of this study was to determine and compare the ‘Magnolia’ species, four species including Manolia denudata, M. biondii, M. liliiflora and M. Kobus were analysis of sequencing data revealed DNA polymorphisms. The based on tRNA coding leucine/phenylalanine (trnL-F) and NADH-plastoquinone oxidoreductase subunit 5 (ndhF) sequences in chloroplast DNA. For the identification of ‘Magnolia’ species, polymerase chain reaction (PCR) analysis of chloroplast DNA regions such as ndhF have proven an appropriate method. A single nucleotide polymorphism (SNP) has been identified between genuine “Sini” and their fraudulent and misuse. Specific PCR primers were designed from this polymorphic site within the sequence data, and were used to detect true plants via multiplex PCR.

표고 품종 산백향과 설백향 구분을 위한 CAPS 마커 개발 (Development of Cleaved Amplified Polymorphic Sequence Markers of Lentinula edodes Cultivars Sanbaekhyang and Sulbaekhyang)

  • 문수윤;홍창표;류호진;이화용
    • 한국균학회지
    • /
    • 제49권1호
    • /
    • pp.33-44
    • /
    • 2021
  • 본 연구에서는 국내에 유통되고 있는 40개 표고 품종들로부터 산백향과 설백향의 구분이 가능한 CAPS 마커를 개발하였다. 제한효소 Hha I 과 HpyCH4IV를 이용한 밴드 패턴 분석을 통해 각각 산백향과 설백향을 다른 균주들과 구분하여 구별성을 확보할 수 있었다. 본 연구에서 개발된 CAPS 마커는 표고의 품종들 간에 유전적 다양성을 부여함으로써, 품종을 보호할 수 있는 분자생물학적 근거가 될 수 있다. 이로써 향후 유전자원에 대한 국가간 분쟁을 미연에 방지할 수 있을 것이다.

A Promoter SNP (rs1800682, -670C/T) of FAS Is Associated with Stroke in a Korean Population

  • Kang, Sung-Wook;Chung, Joo-Ho;Kim, Dong-Hwan;Yun, Dong-Hwan;Yoo, Seung-Don;Kim, Hee-Sang;Seo, Wan;Yoon, Jee-Sang;Baik, Hyung-Hwan
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.206-211
    • /
    • 2010
  • The Fas (TNF receptor superfamily, member 6) (FAS)/FAS ligand (FASLG) interaction plays a central role in the regulation of programmed cell death. FAS and FASLG polymorphisms in promoter regions affect transcriptional activities. To investigate whether FAS and FASLG polymorphisms are associated with the development and clinical phenotypes of stroke, 2 promoter single nucleotide polymorphisms (SNPs) in FAS (rs1800682, -670C/T) and FASLG (rs763110, -844C/T) were selected and genotyped by direct sequencing in 220 stroke patients [107 ischemic stroke (IS), 77 intracerebral hemorrhage (ICH), and 36 subarachnoid hemorrhage (SAH)] and 369 control subjects. For the analysis of clinical symptoms, all stroke patients were divided into 3 clinical phenotypes according to the respective results of the National Institutes of Health Stroke Survey (NIHSS) and the Modified Barthel Index (MBI) and the presence or absence of complex regional pain syndrome (CRPS). The SNPStats, SNPAnalyzer, and Helixtree programs were used to analyze the genetic data. Multiple logistic regression models (codominant, dominant, and recessive) were used to estimate odds ratios (ORs), 95% confidence intervals (CIs), and p-values. The promoter SNP rs1800682 was associated with stroke in the codominant (OR=0.48, 95% CI=0.25-0.94, p=0.04) and dominant models (OR=0.51, 95% CI=0.30-0.87, p=0.011). However, a FASLG SNP (rs763110) was not in Hardy-Weinberg equilibrium (p<0.05). In the analysis of stroke types, rs1800682 was associated with IS in the codominant (OR=0.30, 95% CI=0.12-0.74, p=0.025), dominant (OR=0.44, 95% CI=0.23-0.88, p=0.018), and recessive models (OR=0.45, 95% CI=0.21-0.99, p=0.042). The genotype frequencies of rs1800682 were different between ICH and controls in the dominant model (OR=0.49, 95% CI=0.26-0.94, p=0.031) but not between SAH and controls. In the analysis of clinical symptoms, however, rs1800682 was not related to the 3 clinical phenotypes (NIHSS, MBI, and CRPS). These results suggest that a promoter SNP (rs1800682, -670C/T) in FAS may be associated with the development of stroke in the Korean population.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

배추 유전체열구의 현황과 전망 (Korea Brassica Genome Project: Current Status and Prospective)

  • 최수련;박지영;박범석;김호일;임용표
    • Journal of Plant Biotechnology
    • /
    • 제33권3호
    • /
    • pp.153-160
    • /
    • 2006
  • 유전체 연구란 목적하는 유전체의 구조를 밝히고 가지고 있는 모든 유전자의 기능 및 진화과정을 망라하여 이해하고자 하는 것이다. 계통발생학상 애기장대와 연관되어 있는 Brassica rapa는 채소, 유지 및 사료로 이용되는 중요한 작물의 하나이다. Brassica rapa의 유전체 연구를 착수하는 데는 적합한 유전학적 재료 및 유전체 재료가 있어야 한다. 우리는 배추 (Brassica rapa spp. pekinensis)를 재료로 하여 표준 mapping 집단을 개발하여, 78계통으로 구성된 DH집단과 약 250 계통으로 구성된 RI집단을 개발하였다. 2가지 제한효소 (HintIII, BamHI)를 이용해 세균인공염색체 (BAC) library (KBrH, KBrB)를 만들었고, 이들은 각각 56,592개와 50,688개의 클론으로 구성되어 있다. 또한 배추의 각기 다른 부위를 이용하여 만든 22가지의 cDNA library를 이용하여 평균 575bp의 길이를 가지는 104,914개의 EST 분석을 실시 하였다. 세계적으로 'Multinational Brassica Genome Project (MBGP)' 조직이 구성되었고 배추의 전 염기서열 분석을 하기로 2003년 결정되었다. 그 첫 단계로 104,914개의 BAC 클론의 BAC-end 염기서열분석이 제안되어 2006년 9월 5개국 공동 프로젝트로 추진하여 완성하게 되었다. 이러한 BAC-end 염기서열분석의 결과는 유전자의 염기서열 해석, 및 풍부하게 존재하는 반복염기서열 DNA를 분석함으로써 배추의 유전체 구조를 이해할 수 있는 실마리를 주었다. BAC 클론의 전체 염기서열분석은, 비록 단편 내에 유전자의 결실이 변화무쌍하게 일어나지만 배추 DNA 단편이 유전체에서 광범위하게 삼중복으로 존재함을 나타냈다. 이러한 BAC-end 염기서열을 아기장대 염기서열에 비교하여 629개의 종자 BAC을 선정하게 되었고, 이들의 염기서열 분석을 완성하였다. MBGP에서는2단계로서 배추의 전 유전체 염기서열 분석을 추진하게 되었고, 유전자지도에 위치한 종자 BAC을 이용하여 인접한 BAC 클론을 찾아 염기서열 분석하는 BAC-to-BAC 방법을 추진하고 있으며 8개국에서 참여하여 현재 염기서열 분석을 추진 중 이다. 최근에 각 국에서는 생물정보학기법을 활용한 염기서열 분석 기반에 대하여 많은 토론이 진행되고 있다. 앞으로 다양한 유전체 정보가 축적됨에 따라 배추의 유전체 구조를 이해하고 농업적으로 적용하고자 하는데 기여를 할 것이다.