• Title/Summary/Keyword: Molecular Separation

Search Result 487, Processing Time 0.03 seconds

Treatment of Tapioca Starch Wastewater By Anaerobic Digestion Coupled With Membrane Separation Process (혐기성 소화 및 막분리에 의한 Tapioca 전분의 폐수처리)

  • ;S. Vigneswaran
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.135-141
    • /
    • 1991
  • This study thus looks into two treatment processess : i) Anaerobic digester coupled with hollow fibre membrane unit. Treatment of starch waste with anaerobic digester-membrane system was studied. $0.17\m^2$ area of hollow fibre membrane unit of known pore size was immersed into laboratory-scale anaerobic digestion system. The pore size of membrane was varied from 0.03 to $\0.15mu$m. The hydraulic retention time of anaerobic digester was varied from 1.5 to 10 days. The effect of hydraulic retention time on treatment efficiency was significant while effect of membrane size was not significant. The gas production was about 0.74㎥/kg COD treated. The COD removal efficient was about 80-95% depending on the hydraulic retention time. ii ) Crossflow ultrafiltration as post treatment to anaerobic filter. The effluent from anaerobic filter, which had a total COD in the range of 4,500-5,200 mg/L was treated by crossflow ultrafiltration units. The study conducted with different membrane pore size indicated that membrace with 1,000,000 molecular weight cut-off size gave a higher COD removal efficiency in the range of 83-87% while giving a study flux of $120-130 L/\m^2$.h. A study was conducted to see the long term clogging effect of membrane also.

  • PDF

Synthesis and Thermal Property of Poly(styrene-g-caprolactone) with Well-defined Structure (분자구조가 제어된 Poly(styrene-g-caprolactone)의 합성 및 그라프트 공중합체의 열적 성질)

  • 오병석;안성국;조창기
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.306-313
    • /
    • 2000
  • Polycaprolactone (PCL) macromer containing terminal methacrylate group was synthesized by ring-opening polymerization. The number average molecular weight of PCL macromer was 11600 g/mole and polydispersity index was 1.09. The synthesized PCL macromer was copolymerized with styrene by stable free radical polymerization using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), benzoyl peroxide, and well-defined poly(styrene-g-caprolactone)s were synthesized. The synthesized copolymers was characterized by $^1$H-NMR and gel permeation chromatography equipped with multiangle laser light scattering detector. Thermal properties of graft copolymers were investigated by DSC.

  • PDF

Separation and Purification of Chiral Compounds Using Crosslinked Sodium Alginate Membranes (가교화된 알진산나트륨막을 이용한 키랄 화합물 분리 정제)

  • 김지혜;김상균;이규호;제갈종건
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.352-359
    • /
    • 2004
  • Membrane technology was used for the optical resolution of the various racemic compounds such as tryptophan, tyrosine and phenylalanine, using enantioselective membranes prepared from sodium alginate (SA) and glutaraldehyde as a membrane material and crosslinking agent, respectively, The chemical structure of the membranes was characterized with FT-IR spectrophotometry and 3D molecular structure modeling study was done to figure out the optical resolution mechanism through the membrane. Effects of degree of crosslinking, feed concentration, operating pressure and different kinds of feed solution on the membrane performances were studied. As results, it was found that with increasing degree of crosslinking and membrane thickness, and decrease in the concentration of the feed solution and smaller size of solutes, the enantinselectivity of the membrane was improved. When the sodium alginate membranes with 80% of swelling index and 79${\mu}{\textrm}{m}$ of thickness were used, 77% of enantiomeric excess was obtained.

Ab Initio Quantum Mechanical Study for the Photolysis and Unimolecular Decomposition Reactions in the Atmosphere of CF₃OH

  • 김승준;송현섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1493-1500
    • /
    • 1999
  • The electronic transitions from the ground state to low-lying excited states of CF₃OH have been investigated using high level ab initio quantum mechanical techniques. Also the possible photodissociation procedures of CF₃OH have been considered. The highest level employed in this study is TZP CCSD(T) level of theory. The possible four low-lying excited states can result by the excitation of the lone pair electron (n) in oxygen to σ$^*$ molecular orbital in C-O or O-H bond. The vertical transition (n → σ$^*$) energy is predicted to be 220.5 kcal/mol (130 nm) at TZ2P CISD level to theory. The bond dissociation energies of CF₃OH to CF₃O +H and CF₃+OH have been predicted to be 119.5 kcal/mol and 114.1 kcal/mol, respectively, at TZP CCSD level of theory. In addition, the transition state for the unimolecular decomposition of CF₃OH into CF₂O + HF has been examined. The activation energy and energy separation for this decomposition have been computed to be 43.6kcal/mol and 5.0 kcal/mol including zero-point vibrational energy corrections at TZP CCSD(T) level of theory.ed phenols were also estimated.

Efficient Preparation of Radioiodine Labelled 3,5,3'-Triiodothyronine and Thyroxine for Medical Use

  • Kim, Jaerok;Kim, Tae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.127-133
    • /
    • 1975
  • For isotopic exchange labelling of 3,5,3'-triiodothyronine (T$_3$) and thyroxine (T$_4$) with radioiodide in the presence of molecular iodine, T$_3$:I$_2$ or T$_4$:I$_2$ molar ratios, pH, and reaction time are. considered to be important factors. A modified labelling and separation method is proposed in present paper, by which T$_3$-$^{125}$ I and T$_4$-$^{125}$ I can be obtained with the mean labelling yields of 45%, and 50%, respectively. The whole reaction products can be separated by adoption of thin-layer chromatography technique using silica gel plate and the solvent system composd of chloroform, methanol and ammonia.

  • PDF

NCAPH Stabilizes GEN1 in Chromatin to Resolve Ultra-Fine DNA Bridges and Maintain Chromosome Stability

  • Kim, Jae Hyeong;Youn, Yuna;Hwang, Jin-Hyeok
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.792-805
    • /
    • 2022
  • Repairing damaged DNA and removing all physical connections between sister chromosomes is important to ensure proper chromosomal segregation by contributing to chromosomal stability. Here, we show that the depletion of non-SMC condensin I complex subunit H (NCAPH) exacerbates chromosome segregation errors and cytokinesis failure owing to sister-chromatid intertwinement, which is distinct from the ultra-fine DNA bridges induced by DNA inter-strand crosslinks (DNA-ICLs). Importantly, we identified an interaction between NCAPH and GEN1 in the chromatin involving binding at the N-terminus of NCAPH. DNA-ICL activation, using ICL-inducing agents, increased the expression and interaction between NCAPH and GEN1 in the soluble nuclear and chromatin, indicating that the NCAPH-GEN1 interaction participates in repairing DNA damage. Moreover, NCAPH stabilizes GEN1 within chromatin at the G2/M-phase and is associated with DNA-ICL-induced damage repair. Therefore, NCAPH resolves DNA-ICL-induced ultra-fine DNA bridges by stabilizing GEN1 and ensures proper chromosome separation and chromosome structural stability.

Avantor® ACE® UltraCore HPLC and UHPLC Columns (Avantor® ACE® UltraCore HPLC/UHPLC 칼럼 가이드)

  • Peter Bridge;Ian Phillips;Gemma Lo;Cassandra Rusher
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.4.1-4.15
    • /
    • 2024
  • The Avantor® ACE® UltraCore series encompasses High Performance Liquid Chromatography (HPLC) and Ultra High Performance Liquid Chromatography (UHPLC) columns designed to deliver high throughput and high-efficiency ultra-fast separations. Utilizing ultra-inert solid-core silica particles with monodisperse particle distribution, these columns combine the high efficiency of UHPLC with the operability of HPLC instrumentation, yielding lower backpressure and high-resolution separations suitable for a broad spectrum of analytes. The Avantor® ACE® UltraCore range includes three primary product types: • UltraCore BIO: Designed for large biomolecules (≥5 kDa), these columns offer exceptional performance in separating biologically derived compounds. • UltraCore: Ideal for standard small organic molecules, providing rapid separations for both synthetic and natural mixtures. • UltraCore Super: Equipped with encapsulated bonding technology for small organic molecules in extreme pH conditions, optimal for high pH buffer requirements. The Avantor® ACE® UltraCore columns present a versatile and high-efficiency solution for chromatographic separation needs, accommodating a wide range of molecular sizes and providing enhanced resolution and reduced analysis time. Their adaptability to both HPLC and UHPLC systems, combined with the advantages of solid-core technology, makes them an invaluable tool in analytical and preparative chromatography.

  • PDF

Structural and Optical Properties of Self-assembled InAs/InAl(Ga)Ae Quantum Dots on InP (InP 기판에 성장한 자발형성 InAs/InAl(Ga)As 양자점의 구조 및 광학적 특성)

  • Kim Jin-Soo;Lee Jin-Hong;Hong Sung-Ui;Kwack Ho-Sang;Choi Byung-Seok;Oh Dae-Kon
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.194-200
    • /
    • 2006
  • Self-assembled InAs/InAl(Ga)As quantum dots (QDs) were grown on InP substrates by a molecular-beam epiaxy, and their structural and optical properties were investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and room-temperature photoluminescence (PL). AFM images indicated that the InAs quantum structures showed various shapes such as quantum dashes, asymmetric and symmetric QDs mainly caused by the initial surface conditions of InAl(Ga)As with the intrinsic phase separation. For the buried InAs QDs in an InAlGaAs matrix, the average lateral size and height of QDs were 23 and 2 nm, respectively. By changing the growth conditions for the QD samples, the emission wavelength of $1.55{\mu}m$ was obtained, which is one of the wavelength windows for fiber optic communications.

Separation of Hydrogen-Nitrogen Gases by PTMSP/PDMS-Borosilicate Composite Membranes (PTMSP/PDMS-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • The PTMSP/PDMS graft copolymer were synthesized from the PTMSP[poly(1-trimethylsilyl-1-propyne)] and the PDMS[poly(dimethylsiloxane)] and then the PTMSP/PDMS-borosilicate composite membranes were prepared by adding the porous borosilicates to the PTMSP/PDMS graft copolymer. The number-average molecular weight (${\bar{M}}_n$) and the weight-average molecular weight (${\bar{M}}_w$) of PTMSP/PDMS graft copolymer were 460,000 and 570,000 respectively, and glass transition temperature ($T_g$) of PTMSP/PDMS graft copolymer appeared at $33.53^{\circ}C$ according to DSC analysis. According to the TGA measurements, the addition of borosilicate to the PTMSP/PDMS graft copolymer leaded the decreased weight loss and the completed weight loss temperature went down. SEM observation showed that borosilicate was dispersed in the PTMSP/PDMS-borosilicate composite membranes with the size of $1{\sim}5{\mu}m$. Gas permeation experiment indicated that the addition of borosilicate to PTMSP/PDMS graft copolymer resulted in the increase in free volume, cavity and porosity resulting in the gradual shift of the mechanism of the gas permeation from solution diffusion to molecular sieving surface diffusion, and Knudsen diffusion. Consequently, the permeability of $H_2$ and $N_2$ increased and selectivity ($H_2/N_2$) decreased as the contents of borosilicate increased.

A Study on the Characteristics of Oil-water Separation in Non-point Source Control Facility by Coalescence Mechanism of Spiral Buoyant Media (나선형 부유 고분자 여재의 Coalescence 특성을 이용한 비점오염원 저감시설의 유수분리특성 연구)

  • Kang, Sung-Won;Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Kim, Soo-Hae;Kim, Mee-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.950-955
    • /
    • 2007
  • Non-point source control system which had been designed only for oil-water separation in the fields of oil refinery and garage was upgraded in this research for the removal of runoff pollutants in impervious urban area. Pollutants including oil from driveway and bridge were eliminated by two types of pathway in the system. One is the coalescence mechanism that the oil droplets in the runoff come into contact with each other in the spiral buoyant media surface and form larger coalesced droplets of oil that are carried upstream to the oil layer. The other is the precipitation that solids in runoff were settled by gravity in the system. In this research, coalescing characteristics of oil and water separation were investigated through image analyses, and efficiencies of the non-point source control system were evaluated using dust in driveway and waste engine oil. Media made of high density and high molecular weight polyethylene was indeterminate helical shape and had sleek surface by analysing SEM photographs and BET. Surface area and specific gravity of media which were measured directly were 1,428 $mm^2$ and 45.3 $kg/m^3$ respectively. From the image analyses of the oil droplets photographs which were taken by using microscope, it was proved clearly that the coalescence was the main pathway in the removal of oil from the runoff. Finally, the performances of the non-point source control system filled up with the media were suspended solid $86.6\sim95.2%$, $COD_{Cr}$, $87.3\sim95.4%$, n-Hexane extractable materials $71.8\sim94.8%$ respectively.