• Title/Summary/Keyword: Molecular Flow

Search Result 890, Processing Time 0.033 seconds

Protective Effect of Enzymatic Extracts from Sargassum coreanum on H2O2-induced Cell Damage

  • Ko, Seok-Chun;Kang, Sung-Myung;Lee, Seung-Hong;Ahn, Gin-Nae;Kim, Kil-Nam;Kim, Yong-Tae;Kim, Jin-Soo;Heu, Min-Soo;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.1
    • /
    • pp.26-35
    • /
    • 2010
  • In our previous study, we preliminarily demonstrated that Celluclast and Neutrase extracts exhibited the strongest $H_2O_2$-scavenging activities among five carbohydrases (Viscozyme, Celluclast, Termamyl, Ultraflo and AMG) and five proteases (Kojizyme, Alcalse, Flavourzyme Protamex and Neutrase) extracts. Thus, Celluclast and Neutrase extracts were selected for use in further experiments and were separated into four different molecular weight fractions (<5, 5-10, 10-30 and >30 kDa). Among them, the 5-10 kDa fraction showed the highest $H_2O_2$-scavenging activity. The 5-10 kDa fraction also strongly enhanced cell viability against $H_2O_2$-induced oxidative damage. Furthermore, the fraction reduced the proportion of apoptotic cells induced by $H_2O_2$, as demonstrated by decreased sub-G1 hypodiploid cells and decreased apoptotic body formation by flow cytometry. These results indicated that the 5-10 kDa fraction of the Celluclast and Neutrase extracts from S. coreanum exhibited strong antioxidant activity over $H_2O_2$-mediated cell damage in vitro.

Inhibitory Effects of Constituents of Gastrodia elata Bl. on Glutamate-Induced Apoptosis in MIR-32 Human Neuroblastoma Cells

  • Lee, Yong-Soo;Ha, Jeoung-Hee;Yong, Chul-Soon;Lee, Dong-Ung;Huh, Keun;Kang, Young-Shin;Lee, Sun-Hee;Jung, Mi-Wha;Kim, Jung-Ae
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.404-409
    • /
    • 1999
  • The inhibitory effects of the constituents of Gastrodia elata Bl. (GE) on glutamate-induced apoptosis in human neuronal cells were investigated using IMR32 human neuroblastoma cells. Glutamate (GLU) induced DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. GLU also induced a slow and sustained increase in intracellular $Ca^{2+}$ concentration. Treatment with EGTA, an extracellular $Ca^{2+}$ chelator, in a nominal $Ca^{2+}$ -free buffer solution abolished the GLU-induced intracellular $Ca^{2+}$ increase, indicating that GLU stimulated Ca2+ influx pathway in the IMR32 cells. BAPTA, an intracellualr $Ca^{2+}$ chelator, significantly inhibited the GLU-induced apoptosis assessed by the flow cytometry measuring hypodiploid DNA content indicative of apoptosis, implying that intracellular $Ca^{2+}$ rise may mediate the apoptotic action of GLU. Vanillin (VAN) and p-hydroxybenzaldehyde(p-HB), known constituents of GE, significantly inhibited both intracellular $Ca^{2+}$ rise and apoptosis induced by GLU. These results suggest that the apoptosis-inhibitory actions of the constituents of GE may account, at least in part, for the basis of their antiepileptic activities. These results further suggest that intracelluarl $Ca^{2+}$ signaling pathway may be a molecular target of the constituents of GE.

  • PDF

Assessment of genetic diversity of Prangos fedtschenkoi (Apiaceae) and its conservation status based on ISSR markers

  • Mustafina, Feruza U.;Kim, Eun Hye;Son, Sung-Won;Turginov, Orzimat T.;Chang, Kae Sun;Choi, Kyung
    • Korean Journal of Plant Taxonomy
    • /
    • v.47 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • Prangos fedtschenkoi (Regel et Schmalh.) Korovin (Apiaceae) is an endemic species for mountainous Middle Asia, which is both a rare and useful plant. Organic extractions from this species are being used in pharmaceutics and cosmetology. In recent years, P. fedtschenkoi distribution area has considerably decreased, presumably, resulting from human activities such as agriculture, construction works, overgrazing and collection from wild for pharmaceutic purposes. Six populations were found in Uzbekistan and their genetic divergence and differentiation were studied with 10 inter-simple sequence repeat (ISSR) markers, selected out of 101. Totally 166 amplified ISSR fragments (loci) were revealed, of which 164 were polymorphic. Relatively moderate level of polymorphism was found at population level with polymorphic bands ranging from 27.71% to 47.59%. Mean P = 39.05%, $N_a=1.40$, $N_e=1.25$, S.I. = 0.21, and $H_e=0.14$ were revealed for all loci across six populations. AMOVA showed higher variation among populations (62%) than within them (38%). The Bayesian model determined 5 clusters, or genetic groups. The posteriori distribution of the Theta II estimator detected full model identifying high inbreeding, intensified by low gene flow (Nm = 0.3954). Mantel test confined population 6 as distinct cluster corresponding to geographic remoteness (R = 0.5137, $p{\leq}0.005$). Results were used as the bases for developing conserve measures to restore populations.

Printing Properties of Ag Paste with the Variation of Binder on the SiNx Coated Si Wafer (SiNx 층이 코팅된 Si Wafer에 바인더 종류에 따른 Ag 페이스트의 인쇄 특성)

  • Kang, Jea Won;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.85-90
    • /
    • 2014
  • Ag paste has been used in the front electrode of the Si-solar cell. It is composed by Ag powder, glass frit, binder, solvent and dispersant. The role of the binder and the solvent is to make a flow and a printing property. However, it was not enough to report the printing properties with the variation of binder in the controled viscosity. In this study, we selected 3 kinds of typical binder which were used as binder for the paste in the industry, such as Ethyl cellulose, Hydroxypropyl cellulose and Acrylic. Ag pastes using these were prepared, controled viscosity and printed on the SiNx coated Si wafer. In the 'A paste' used Acrylic binder, printed hight was highest and 'H paste' used Hydroxypropyl cellulose binder was lowest. Because 'H paste' was high viscosity due to the molecular weight, the solvent was added in the paste to control the viscosity. Therefore, the content of solid was lower in 'H paste'. The relative pattern width which is related to the spreading of paste was the best in the case of 'H paste' and 'EH paste' at $30^{\circ}C$. It is thought that the optimization of the relative pattern width is possible for a paste by the controling shear thinning phenomenon. In the case of 'A paste', though printing hight was best, the pattern width was dependant on the temperature.

POLLUTION PREVENTION : ENGINEERING DESIGN AT MACRO-, MESO-, AND MICROSCALES

  • Allen, David T.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • Billions of tons of industrial waste are generated annually in industrialized countries. Managing and legally disposing of these wastes costs tens to hundreds of billions of dollars each year, and these costs have been increasing rapidly. The escalation is likely to continue as emission standards become even more stringent around the world. In the face of these rapidly rising costs and rapidly increasing performance standards, traditional end-of-pipe approaches to waste management have become less attractive. The most economical waste management alternatives in many cases have become recycling of the waste or the redesign of chemical processes and products so that wastes are prevented or put to productive use. These strategies of recycling or reducing waste at the source have collectively come to be known as pollution prevention. The engineering challenges associated with pollution prevention are substantial. This presentation will categorize the challenges in three levels. At the most macroscopic level, the flow of materials in our industrial economy, from natural resource extraction to consumer product disposal, can be redesigned. Currently, most of our raw materials are virgin natural resources that are used once, then discarded. Studies in what has come to be called industrial ecology examine the material efficiency of large-scale industrial systems and attempt to improve that efficiency. A second level of engineering challenges is found at the scale of individual industrial facilities, where chemical processes and products can be redesigned so that waste is reduced. Finally, on a molecular level, chemical synthesis pathways, combustion reaction pathways, and other material fabrication procedures can be redesigned to reduce emissions of pollution and unwanted by-products. All of these design activities, shown in Figure 1, have the potential to prevent pollution. All involve the tools of engineering, and in particular, chemical engineering.

  • PDF

Approximate Optimization of an Active Micro-Mixer (능동형 미소혼합기의 근사최적화)

  • Park, Jae-Yong;Kim, Sang-Rak;Yoo, Jin-Sik;Lim, Min-Gyu;Kim, Young-Dae;Han, Seog-Young;Maeng, Joo-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2008
  • An active micro-mixer, which is composed of an oscillating micro-stirrer in the micro-channel to provide effective mixing was optimized. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight micro-channel and micro-channel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models were compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an approximate optimization of an active micro-mixer with an oscillating stirrer was performed using Kriging method with OLHD(Optimal Latin Hypercube Design) in order to determine the optimal design variables. The design parameters were established as the frequency, the length and the angle of the stirrer. The optimal values were obtained as 1.0346, 0.66D and $\pm45^{\circ}$, respectively. It was found that the mixing index of the optimal design increased by 88.72% compared with that of the original design.

THE ROLE OF MAPK AND PKC-${\delta}$ IN PHOSPHATIDIC ACID-MEDIATED INTERCELLULAR ADHESION MOLECULE-1 EXPRESSION (Phosphatidic acid에 의한 intercellular adhesion molecule-1 발현 조절에 관여한 MAPK와 PKC-${\delta}$의 역할)

  • Cho, Woo-Sung;Yoon, Hong-Sik;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.445-454
    • /
    • 2007
  • Background: Phosphatidic acid(PA), an important second messenger, is involved in inflammation. Notably, cell-cell interactions via adhesion molecules playa central role in inflammation. This thesis show that PA induces expression of intercellular adhesion molecule-1(ICAM-1) on macrophages and describe the signaling pathways. Materials and methods: Macrophages were cultured in the presence of 10% FBS and assayed cell to cell adhesion using HUVEC. For the gene and protein analysis, RT-PCR, Western blot and flow cytometry were performed. In addition, overexpressed cell lines for dominant negative PKC-${\delta}$ mutant established and tested their effect on the promoter activity and expression of ICAM-1 protein by PA. Results: PA-activated macrophages significantly increased adhering to human umbilical vein endothelial cell and this adhesion was mediated by ICAM-1. Pretreatment with rottlerin(PKC-${\delta}$ inhibitor) or expression of a dominant negative PKC-${\delta}$ mutant, but not Go6976(classical PKC-${\alpha}$ inhibitor) and myristoylated PKC-${\xi}$ inhibitor, attenuated PA-induced ICAM-1 expression. The p38 mitogen-activated protein kinase(MAPK) inhibitor blocked PA-induced ICAM-1 expression in contrast, ERK upstream inhibitor didn't block ICAM-1. Conclusion: These data suggest that PA-induced ICAM-1 expression and cell-cell adhesion in macrophages requires PKC-${\delta}$ activation and that PKC-${\delta}$ activation is triggers to sequential activation of p38 MAPK.

Induction of Differentiation of the Cultured Rat Mammary Epithelial Cells by Triterpene Acids

  • Paik, Kee-Joo;Jeon, Seong-Sill;Chung, Hae-Young;Lee, Kyung-Hee;Kim, Kyu-Won;Chung, Joon-Ki;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 1998
  • We investigated the effects of triterpene acids (TAs), ursolic acid (UA) and oleanolic acid (OA), on the induction of proliferation and differentiation of normal rat mammary epithelial cells (RMEC) or organoids cultured in Matrigel or primary culture system. To elucidate the effects, we tested their differentiation inducing activities with intercellular communication ability, cell cycle patterns, induction of apoptosis, and morphological differentiation in the three dimensional extracellular culture system. To study the changes of RMEC subpopulation in culture, the cultured cells were isolated, immunostained with peanut lectin (PNA) and anti-Thy-1.1 antibody and then analyzed with flow cytometry. Four different subpopulations, such as PNA and Thy-1.1 negative cells (B-), PNA positive cells (PNA+), Thy-1.1 positive cells (Thy-1.1+), PNA and Thy-1.1 positive cells (B+), were obtained and the size of each subpopulation was changed in culture with time in the presence of TAs. Intercellular communication was observed in culture for 7 days in TAs-treated cells, but not in culture for 4 days with scrape-loading dye transfer technique. $G_2$/M phase cells and the number of apoptotic population were increased in TAs-treated groups in cell cycle analyses. S phase fractions were reduced and the change of $G_1$ phase cells was not observed. The colonies with distinct multicelfular structures, such as stellate, ductal, webbed, squamous, lobulo-ductal colonies, were observed in Matrigel culture and the frequencies of each colony were changed in the presence of TAs. These results suggest that UA and OA have differentiation inducing effects on rat mammary epithelial cells in primary or in Matrigel culture.

  • PDF

Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats

  • Wang, Haidong;Li, Deyuan;Hu, Zhongze;Zhao, Siming;Zheng, Zhejun;Li, Wei
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.508-513
    • /
    • 2016
  • To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1-${\beta}$ (IL-1-${\beta}$) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult

  • Zhang, You-en;Wang, Jia-ning;Tang, Jun-ming;Guo, Ling-yun;Yang, Jian-ye;Huang, Yong-zhang;Tan, Yan;Fu, Shou-zhi;Kong, Xia;Zheng, Fei
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.