• Title/Summary/Keyword: Molecular Breeding

Search Result 786, Processing Time 0.026 seconds

Cannabinol Synthase Gene Based Molecular Markers for Identification of Drug and Fiber Type Cannabis sativa (마약성과 비마약성 대마 품종의 식별을 위한 카나비놀 생합성 유전자 분석법)

  • Park, Hyun-Seung;Oh, Hye Hyun;Kim, Sungmin;Park, Jee Young;Kim, Jintae;Shim, Hyeonah;Yang, Tae-Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • Cannabis sativa is an important industrial plant utilized to produce fiber, oil, and medicinal ingredients. A chemotype of cannabis is divided into "Drug type" with predominance of tetrahydrocannabinolic acid (THCA) and "Fiber type" with cannabidiolic acid (CBDA). To develop molecular markers for the discrimination of these two types, nucleotide sequences of THCA synthase and CBDA synthase as well as their pseudogenes were retrieved from the recently published cannabis genome in chromosome scale. Gene-specific SNPs were discovered by multiple alignment of these sequences, and 2 dominant marker sets from each gene were designed for selective amplification. Our markers successfully identified "Drug type" and "Fiber type" cannabis plants as well as forensic samples including processed materials. Our molecular markers will provide a fast and efficient system for molecular-based identification of the cannabis plant.

Utilization of Molecular Markers in Plant Genetics and Breeding (식물유전 및 육종학 연구에서의 분자생물학적 마커기술의 이용)

  • 이주경
    • Korean Journal of Plant Resources
    • /
    • v.10 no.2
    • /
    • pp.200-210
    • /
    • 1997
  • The understanding on the plant genome is accelerated with the fast advance of molecular biological techniques. The molecular dissecting of the plant genome has made possible the precise genotyping the plants, which can be utilized for molecular breeding program. As well, the molecular cloning of genes interested can facilitate the process of gene transfer between intra-and inter-generic taxa. Moreover, the manipulation of the agronomically important QTL genes, which can be rarely performed by the conventional genetic methods, is also possible by the utilization of molecular markers. In addition to these genetical applications, molecular markers are useful in the areas of plant taxonomy and management of germplasm by fingerprinting analysis. This paper describes the theoretical aspects marker technologies and practical applications of each marker technique.

  • PDF

Molecular Markers and Their Application in Mulberry Breeding

  • Vijayan, Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.145-155
    • /
    • 2007
  • Mulberry (Morus spp.) is an economically important tree crop being cultivated in India, China and other sericulturally important countries for its foliage to feed the silk producing insect Bombyx mori L. Genetic improvements of mulberry lag behind to the same in many other economically less important crops due to the complexity of its genetics, the breeding behavior, and the lack of basic information on factors governing important agronomic traits. In this review, the general usage and advantages of different molecular markers including isoenzymes, RFLPs, RAPDs, ISSRs, SSRs, AFLPs and SNPs are described to enlighten their applicability in mulberry genetic improvement programs. Application of DNA markers in germplasm characterization, construction of genetic linkage maps, QTL identification and in marker-assisted selection was also described along with its present status and future prospects.

First Report of a Foliar Nematode Aphelenchoides fragariae (Aphelenchidae) on Stachys riederi var. japonica, a Medicinal Plant, in Korea

  • Khan, Zakaullah;Son, Seon-Hye;Shin, Hyeon-Dong;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.97-100
    • /
    • 2008
  • Leaf blight symptoms and abnormal defoliation were found on Stachys riederi var. japonica, a medicinal plant, grown at Hongcheon, Gangwon province, Korea in 2007. A foliar nematode, Aphelenchoides fragariae was isolated from infected leaf tissues. The symptoms observed on host plant were leaf blotching, discoloration and browning of tissues, tan-colored interveinal necrotic lesions and large dead patches of necrotic tissues. This is the first report of A. fragariae occurring on S. riederi var. japonica.

Molecular Cloning of a Pepper Gene that Is Homologous to SELF-PRUNING

  • Kim, Dong Hwan;Han, Myeong Suk;Cho, Hyun Wooh;Jo, Yeong Deuk;Cho, Myeong Cheoul;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • "Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADIALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato.

Current status and prospects of chrysanthemum genomics (국화 유전체 연구의 동향)

  • Won, So Youn;Kim, Jung Sun;Kang, Sang-Ho;Sohn, Seong-Han
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.272-280
    • /
    • 2016
  • Chrysanthemum is one of the top floriculture species with ornamental and medicinal value. Although chrysanthemum breeding program has contributed to the development of various cultivars so far, it needs to be advanced from the traditional phenotype-based selection to marker-assisted selection (molecular breeding) as shown in major cereal and vegetable crops. Molecular breeding relies on trait-linked molecular markers identified from genetic, molecular, and genomic studies. However, these studies in chrysanthemum are significantly hampered by the reproductive, genetic, and genomic properties of chrysanthemum such as self-incompatibility, inbreeding depression, allohexaploid, heterozygosity, and gigantic genome size. Nevertheless, several genetic studies have constructed genetic linkage maps and identified molecular markers linked to important traits of flower, leaf, and plant architecture. With progress in sequencing technology, chrysanthemum transcriptome has been sequenced to construct reference gene set and identify genes responsible for developments or induced by biotic or abiotic stresses. Recently, a genome sequencing project has been launched on a diploid wild Chrysanthemum species. The massive sequencing information would serve as fundamental resources for molecular breeding of chrysanthemum. In this review, we summarized the current status of molecular genetics and genomics in chrysanthemum and briefly discussed future prospects.

Development of Molecular Markers and Application for Breeding in Chinese Cabbage (배추의 분자 마커 개발 및 육종적 활용)

  • Kim, Ho-Il;Hong, Chang Pyo;Im, Subin;Choi, Su Ryun;Lim, Yong Pyo
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.745-752
    • /
    • 2014
  • Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an economically important vegetable crop as a source of the traditional food Kimchi in Korea. Although many varieties exhibiting desirable traits have been developed by the conventional selective breeding approach, breeding related to abiotic or biotic stresses, such as a particular pests or diseases, or tolerance to climatic conditions, is likely to be slow. This could be helped by an efficient method for selection from various, rapidly-evolved genetic resources on the basis of molecular markers. In particular, the Brassica genome sequencing project enables genome-wide discovery of genes or genetic variants associated with agricultural traits. We here discuss the recent progress in the field of Chinese cabbage breeding with regard to the application of molecular markers.

Interspecific Hybrids from Wild $\times$ Cultivated Triticum Crosses - A Study on the Cytological Behaviour and Molecular Relations -

  • Bhagyalakshmi, Kari;Vinod, Kunnummal Kurungara;Kumar, Mahadevan;Arumugachamy, Samudrakani;Prabhakaran, Amala Joseph;Raveendran, Thondikulam Subramanian
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.257-262
    • /
    • 2008
  • Genetic diversity of cultivated wheat is narrowing down and is increasingly becoming non-complacent in tackling new pathogenic races and adverse environmental situations. Wild relatives of wheat are rich repositories of beneficial genes that are capable of defying adverse situations. However, these wild species are not readily crossable with cultivated ones. The present study attempted to cross three wild wheat species as females with three cultivated species of varying ploidy to understand the intricate behaviour of hybrids in relation to cytology, morphology, and molecular recombination. Post-fertilization barriers caused hybrid recovery in wild species in contrast to cultivated species. Triticum monococcum did not produce hybrids in any of the crosses. Various degrees of chromosome anomalies and hybrid sterility were seen with hybrids of T. timopheevi and T. sphaerococcum. Cytoplasmic factors were suspected to add more to the abnormality. G genome from T. timopheevi could enhance more pairing between Band D of cultivated species. Precocity of certain chromosomes in laggard formation was evident, pointing towards evolutionary self balance of the genomes which prevented homeologous pairing. They are eliminated in hybrids. Molecular diversity clearly corroborated with genetic proximity of the species, which distinguished themselves by maintaining the genome homeology.

  • PDF

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Effects of Dietary Thiazolidinedione Supplementation on Growth Performance, Intramuscular Fat and Related Genes mRNA Abundance in the Longissimus Dorsi Muscle of Finishing Pigs

  • Chen, X.;Feng, Y.;Yang, W.J.;Shu, G.;Jiang, Q.Y.;Wang, X.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.1012-1020
    • /
    • 2013
  • The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White${\times}$Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of $PPAR{\gamma}$ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.