• Title/Summary/Keyword: Molecular Breeding

Search Result 785, Processing Time 0.025 seconds

$\alpha$- and $\beta$-Amylase Isozyme Expresser Native Proteins in Tropical Silkworm Bombyx mori L.

  • Chattopadhyay, G.K.;Verma, A.K.;Sengupta, A.K.;Das, S.K.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.189-194
    • /
    • 2004
  • Amylase isozyme based three multivoltine viz., N+p, Np, N+ $p^{cho}$ and two bivoltine-D6+p, D6p syngenic lines (Syn. L) were developed from germplasm (GP) stocks Nistari (N) and D6 respectively. haemolymph isozyme pattern at pH 7.0 and 8.5 depicted a total 11 number (Am $y_{1 to 6}$ at pH 7.0 and Am $y^{l to 5}$ at pH 8.5) of native proteins (NP) of various sizes are amylase isozyme expressers. Among eleven NPs, two NPs of 770 kDa (Am $y^{6}$ at pH 7.0) and 376 kDa (Am $y^3$ at pH 8.5) are $\alpha$-amylase expressers and remaining NPs of 370, 364, 350, 329 and 274 kDa at pH 7.0 and 206, 292, 416, 725 kDa at pH 8.5 are $\beta$-amylase expressers. Accordingly, digestive juice amylase isozyme pattern at aforesaid pH also depicted a total number of 10 NPs (Am $y^{1 to 5}$) at each pH 7.0 and 8.5 are amylase expressers of which NP of 387 kDa (Am $y^4$ at pH 7.0) and 780 kDa (Am $y^{5}$ at pH 8.5) are a-amylase expresser. Remaining NPs of 338,297 & 216 kDa at pH 7.0 and 370, 341, 329 &302 kDa at pH 8.5 are $\beta$-amylase expresser. Recurrent backcross lines (RBL) viz., N+pRBL and NpRBL were developed through introgression of high shell weight character (a multigenic trait) to be used further for congenic line (Con. L) development and to understand any association with introgressed character. Isozyme pattern in haemolymph of RBLs depicted only one $\alpha$-amylase of 770 kDa at pH 7.0 and 376 kDa at pH 8.0 with three and four respective $\beta$-amylase bands but in bivoltine lines numbers of $\beta$-amylase bands vary between 1 to 2 at aforesaid pH. Variability was also observed in digestive juice of multivolitine and its RBLs but bivoltine lines express null activity at both pH except appearance of one very week $\alpha$-amylase band D6+p at pH 8.5. Overall study suggests that not a single NP at both pH is common for expression of any band of amylase isozyme i.e., a totally different set of proteins are the amylase isozyme expresser at specific pH and no molecular factor of amylase is associated in developed RBLs which showed improvement on survival, single cocoon shell weight (SCSW) and single filament length over receptor parents.s.s.s.

Molecular Breeding of Genes, Pathways and Genomes by DNA Shuffing

  • Stemmer, Willem P.C.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • Existing methods for optimization of sequences by random mutagenesis generate libraries with a small number of mostly deleterious mutations, resulting in libraries containing a large fraction of non-functional clones that explore only a small part of sequence space. Large numbers of clones need to be screened to find the rare mutants with improvements. Library display formats are useful to screen very large libraries but impose screening limitations that limit the value of this approach for most commercial applications. By contrast, in both classical breeding and in DNA shuffling, natural diversity is permutated by homologous recombination, generating libraries of very high quality, from which improved clones can be identified with a small number of complex screens. Given that this small number of screens can be performed under the conditions of actual use of the product, commercially relevant improvements can be reliably obtained.

Genetic Analysis of Haimen Chicken Populations Using Decamer Random Markers

  • Olowofeso, O.;Wang, J.Y.;Zhang, P.;Dai, G.J.;Sheng, H.W.;Wu, R.;Wu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1519-1523
    • /
    • 2006
  • Through a screening and selection approach method, decamer random markers were used in a technique called random amplified polymorphic DNA (RAPD) assay with 252 genomic DNAs isolated from four major Haimen chicken populations: Rugao (62), Jiangchun (62), Wan-Nan (63) and Cshiqishi (65). A total of 3-score decamer random primers (S241-S260, S1081-S1100 and S1341-S1360) were employed in the preliminary RAPD-polymerase chain reaction (RAPD-PCR) assay with 50 random template DNA samples from all the populations. Four (6.67%) of the primers that produced obvious polymorphic patterns, interpretable and reproducible bands were selected and used with both the individual DNAs from each population and with pooled DNA samples of the four populations in subsequent analyses. The selected primers produced a total of 131 fragments with molecular size ranging from 835 to 4,972 base pairs (bp) when used with the individual DNAs; 105 (80.15%) of these fragments were polymorphic. With the pooled DNAs, 47 stable and characteristic bands with molecular size ranging from 840 to 4,983 bp, of which 23 (48.94%) polymorphic, were also generated. The band-sharing coefficient (BSC) calculated for the individuals in the population and among populations of bulked samples was between 0.8247 (Rugao) and 0.9500 (Cshiqishi); for pairwise populations, it was between 0.7273 (Rugao vs. Wan-Nan) and 0.9367 (Jiangchun vs. Cshiqishi) chicken populations. Using the BSC for individual and pairwise populations, the Nei's standard genetic distances between the chicken populations were determined and ranged from 0.0043 (Jiangchun vs. Cshiqishi) to 0.1375 (Rugao vs. Cshiqishi). The reconstructed dendrogram linked the Jiangchun and Cshiqishi chickens as closely related populations, followed by Wan-Nan, while the Rugao was the most genetically distant among the populations.

Clenbuterol Inhibits SREBP-1c Expression by Activating CREB1

  • Zhou, Lei;Li, Yixing;Nie, Tao;Feng, Shengqiu;Yuan, Jihong;Chen, Huaping;Yang, Zaiqing
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • As a $\beta_2$-adrenergic agonist, clenbuterol decreases body fat, but the molecular mechanism underlying this process is unclear. In the present study, we treated 293T and L-02 cells with clenbuterol and found that clenbuterol downregulates SREBP-1c expression and upregulates CREB1 expression. Considering SREBP-1c has the function of regulating the transcription of several lipogenic enzymes, we considered that the downregulation of SREBP-1c is responsible for body fat reduction by clenbuterol. Many previous studies have found that clenbuterol markedly increases intracellular cAMP levels, therefore, we also investigated whether CREB1 is involved in this process. The data from our experiments indicate that CREB1 overexpression inhibits SREBP-1c transcription, and that this action is antagonized by CREB2, a competitive inhibitor of CREB1. Furthermore, since PPARs are able to repress SREBP-1c transcription, we investigated whether clenbuterol and CREB1 function via a pathway involving PPAR activation. However, our results showed that clenbuterol or CREB1 overexpression suppressed PPARs transcription in 293T and L-02 cells, which suggested that they impair SREBP-1c expression in other ways.

Evaluation of QTL Related SSR Marker Universality in Korean Rice Breeding Populations

  • Song, Moon-Tae;Lee, Jeom-Ho;Lee, Sang-Bok;Ku, Ja-Hwan;Cho, Youn-Sang;Song, Myung-Hee;Park, Sung-Ho;Hwang, Hung-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.56-64
    • /
    • 2003
  • If a quantitative trait loci (QTL) marker identified in a population is applicable to different populations (marker universality), this will not only reduce the labor and cost in marker assisted selection (MAS), but accelerate the application of molecular markers to real breeding programs. Present study aims to evaluate the defined QTL related markers from a population to a different breeding population for the MAS. Four rice breeding populations were subjected to seventy-five simple sequence repeat (SSR) markers which were already identified for their polymorphism information content (PIC) in the parents of the crossings. Among them, eight markers were evaluated for their correlation between presence of marker alleles and phenotypic expression in breeding populations. A reasonable level of polymorphism for the mapped markers originated from any sources of rice accessions was observed between crosses of any sources (marker repeatability). However, correlation between presence of markers and expression of the traits in rice breeding populations was not significant except for minor portion of traits and markers examined (failure of marker universality). In the present study, various strategies were discussed to develop new markers with universality of breeding application.

Molecular Prevalence of Cryptosporidium spp. in Breeding Kennel Dogs

  • Itoh, Naoyuki;Tanaka, Hazuki;Iijima, Yuko;Kameshima, Satoshi;Kimura, Yuya
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.197-200
    • /
    • 2019
  • Cryptosporidium is a common intestinal protozoan that can lead to diarrhea in humans and dogs. The predominant species of infection are C. hominis and C. parvum in humans, and C. canis in dogs. However, C. canis can infect immunocompromised humans. Considering the close contact with humans, dogs have the potential to be reservoirs for human cryptosporidiosis. Breeding kennels are the major supply source of puppies for pet shops. The present study is to determine the molecular prevalence and characteristics of Cryptosporidium spp. found in breeding kennel dogs. A total of 314 fecal samples were collected from young and adult dogs kept in 5 breeding kennels. A polymerase chain reaction targeting the small subunit rRNA gene was employed for the detection of Cryptosporidium spp. To determine the species, the DNA sequences were compared to GenBank data. Overall, 21.0% of the fecal samples were positive for Cryptosporidium spp. infection. Cryptosporidium spp. was detected in all 5 facilities. A sequencing analysis demonstrated that all isolates shared 99-100% similarity with C. canis. The results suggest that Cryptosporidium spp. infection is present at a high-level in breeding kennel dogs. However, because dominant species in this survey was C. canis, the importance of breeding kennel dogs as reservoirs for Cryptosporidium spp. transmission to humans is likely to be low in Japan.

Advances towards Controlling Meiotic Recombination for Plant Breeding

  • Choi, Kyuha
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.814-822
    • /
    • 2017
  • Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.

Potential Benefit of Genetic Engineering in Plant Breeding: Rice, a Case Study

  • Datta, Swapan K.
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.197-206
    • /
    • 2000
  • This paper summarizes recent developments in the field of molecular biology and its application to plant breeding, particularly in rice. Plant breeding in the past mostly depended on the time-consuming crossing of known genomes limited to certain traits. Plant breeding has now benefited from marker-assisted selection and genetic engineering to widen the gene pool, improve plant protection, and increase yield. Future plant breeding will expand based on functional and nutritional genomics, in which gene discovery and high-throughput transformation will accelerate crop design and benefits will accrue to human health, in the form of nutritional food for poor people to reduce malnutrition, or food enriched with antioxidants and with high food value for rich people. Agricultural biotechnology for food is no longer a dream but a reality that will dominate the 21st century for agriculture and human welfare.

  • PDF