• Title/Summary/Keyword: Molding temperature

Search Result 765, Processing Time 0.069 seconds

Variation of Mechanical Properties on Polystyrene Elastomer According to Injection Molding Conditions (폴리스틸렌계 엘라스토머의 사출성형조건에 따른 기계적 물성 변화)

  • Han, Seong-Ryeol;Kim, Joon-Hyung;Jeon, Seung-Gyeong;Jeong, Yeong-Deug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.46-52
    • /
    • 2006
  • From the past, most of the studies about thermoplastic elastomers(TPEs) have been conducted for theirs compounded materials and morphology. However these studies do not directly affect on injection molding processing. Therefor this study is focus on the variation of mechanical properties on TPEs moldings by increasing injection molding conditions which included injection molding conditions include injection pressure, holding pressure, melt temperature, mold temperature. The used experimental TPEs is a group of styrene(TPS). Injection pressure slightly affected on tensile strength, shrinkage and hardness. Holding pressure only affected on hardness. The melt temperature was the most affective condition on tensile strength.

  • PDF

Replication of Microstructured Surfaces by Microinjection Molding (초소형사출성형 공정을 이용한 마이크로 구조 표면의 성형)

  • Lee, Bong-Kee;Kim, Young-Bae;Kwon, Tai-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.135-142
    • /
    • 2009
  • In the present study replication of microstructured surfaces by microinjection molding was carried out. For a fabrication of mold inserts, nickel microstructures having various characteristic dimensions were fabricated by nickel electroforming onto Si mother microstructures. In addition, reverse nickel microstructures based on the electroformed nickel microstructures were successfully realized by electroforming with passivation process. The fabricated nickel microstructures were used as mold inserts for a replication of microstructured surfaces by microinjection molding. Microinjection molding experiment was carried out under three different processing conditions, which revealed effects of a packing stage and mold wall temperature. The microinjection-molded microstructured surfaces were characterized by using an atomic force microscope (AFM). It was found that mold wall temperature could enhance replication quality resulting in the precise microstructured surfaces.

A Study on Properties of Waste Wood-Plastic Composite Panels (폐목재-플라스틱을 이용한 복합패널의 특성 연구)

  • Mun, Kyoung-Ju;Choi, Nak-woon;Choi, San-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.85-94
    • /
    • 2004
  • Waste wood-plastic composite panels are made on different hot press molding conditions, and tested for apparent density, water absorption, expansion in thickness and flexural strength. From the test results, regardless of molding temperature and molding time, the apparent density of the composite panels is increased with an increase in the molding pressure, while their water absorption is decreased with an increase in the molding pressure. The flexural strength of the composite panels is markedly increased with increasing molding pressure, molding temperature and molding time, and tends to become nearly constant at a molding temperature of $120^{\circ}C$ and a molding time of 15min.

  • PDF

Blow Characteristics in Extrusion Blow Molding for Operational Conditions (압출 블로우 성형에서 성형조건에 따른 성형특성)

  • Jun Jae Hoo;Pae Youlee;Lyu Min-Young
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.233-238
    • /
    • 2005
  • Blow molding is divided into three categories, injection stretch blow molding, injection blow molding, and extrusion or direct blow molding. Extrusion blow molding has been studied experimentally to characterize the blowing behavior of parison. Blow conditions such as blowing temperature and cooling time were the experimental variables in this blowing experiment. Wall thickness of the lower part of blow molded sample was thicker than that of the upper part because of the sagging of parison during extrusion process. As temperature increases the wall thickness and the weight of blow molded sample decreased. No thickness variations in the blowing sample were observed according to the cooling time. The lower part of the sample showed high degree of crystallinity compare with the upper part of the sample. Thus the lower part of the sample was strong mechanically and structurally. It was recognized that the uniform wall thickness could not be obtained by only controlling the operational conditions. Parison variator should be introduced to get uniform wall thickness of parison and subsequently produce uniform wall thickness of blow molded product.

A study on yellowing property of LGP under various injection molding conditions (사출성형 조건 변화에 따른 도광판의 황화현산에 관한 연구)

  • Lee, Sung-Jun;Min, In-Ki;Kim, Jong-Sun;Lee, Sung-Hee;Yoon, Kyung-Hwan
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.20-24
    • /
    • 2015
  • Recently, the light guide plate (LGP), a component of the BLU, becomes thinner and larger than ever. In industrial field, specialized injection molding technique is applied to mold the ultra-thin LGP such as a ultra-high speed injection molding. Usually very high melt temperature is used for low viscosity. High injection speed and melt temperature lead to yellowing of LGP. In the present paper a series of injection molding experiment was performed under various injection molding conditions. Yellow index, CIE xy, spectral transmittance of sample were measured using the UV-Visible spectrophotometer. Systematic decrease of spectral transmittance in UV-B range was found as the melt temperature was higher. Yellow index and CIE xy were became higher near the gate location in LGP. From the result of analysis of variance, the main factor to affect for yellow index was mold temperature and that for spectral transmittance(at 315 nm) was melt temperature.

  • PDF

Improvement of Birefringence Characteristics of Injection-Molded Plastic Parts by Rapid Heating (급속 가열에 의한 사출성형품의 복굴절특성 개선)

  • Park, Keun;Kim, Byung-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.195-198
    • /
    • 2007
  • The present work focuses on the prediction of birefringence in injection-molded plastic part and its improvement by rapid mold heating. To calculate birefringence, flow-induced residual stress is computed through a fully three-dimensional injection molding analysis. Then the stress-optical law is applied from which the order of birefringence can be evaluated and visualized. The birefringence patterns are predicted for a rectangular plate with a variation of mold temperatures, which shows that the amount of molecular orientation and birefringence level decreases with an increase of mold temperature. The effect of mold temperature on the order of birefringence is also studied for a thin-walled rectangular strip, and compared with experimental measurements. Both predicted and experimental patterns of birefringence are in agreements on the observation that the birefringence level diminishes significantly when the mold temperature is raised to above the glass transition temperature.

  • PDF

Beating Channel Layout Design and Evaluation Technology for SMC Molds (Sheet Molding Compound 금형의 가열채널설계 및 평가기술)

  • Heo Y. M.;Ko Y. B.;Lee J. H.;Lee S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.263-268
    • /
    • 2005
  • Heating channel layout design and evaluation technology for SMC molding system was investigated in this work. Traditional rules of cooling channel design in injection molding were applied to the present work. Finite element thermal analysis with $ANSYS^{TM}$ was performed to evaluate the temperature distribution of SHC mold surface. SMC mold was manufactured to evaluate the effect of a proposed heating channel layout system on the temperature distribution of SMC mold surface and infrared camera was applied to a measurement of temperature distribution. It was shown that infrared camera application was possible in a measurement of temperature distribution on SHC mold surface.

A Study on the Formation of Gate Mark in Injection Molding (사출성형에서 Gate Mark의 형성에 관한 연구)

  • Kim, J.M.;Kim, D.W.;Hwang, S.J.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.628-632
    • /
    • 2006
  • The gate mark in injection molded part is a kind of surface defects. The formation of gate mark has been investigated in this study. SEM photographs and surface roughness have been examined to study gate mark. The specimens were molded for various injection conditions, such as injection temperature, mold temperature, and injection speed. Gate diameter and mold surface condition were also molding variables. Gate marks were reduced as injection speed and mold temperature increased. Gate diameter and injection temperature did not affect the gate marks. No etching of mold surface showed no gate marks for any molding conditions.

A Study on the Mechanical Properties and Shrinkage of Thermoplastic Elastomer (열가소성 엘라스토머의 기계적 물성과 수축에 관한 연구)

  • Han, S.R.;Kim, J.H.;Jeon, S.G.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.36-41
    • /
    • 2007
  • Thermoplastic elastomer(TPE) can be recycled and molded such as commercial thermoplastic. Therefore TPE has being widely applied on automobile, household and etc. in these days. This study shows the variation of mechanical properties and shrinkage on TPE moldings for variation of injection molding conditions such as injection pressure, holding pressure, melt temperature, mold temperature and etc. Mechanical properties in relation to tensile strength, hardness and shrinkage in connection with precision dimension of part are investigated. The tensile strength and shrinkage of the experimental TPEs are mainly influenced by injection pressure and melt temperature. All injection molding conditions scarcely affect on hardness. To verify the variation of tensile strength and shrinkage, morphology of TPE molding was scanned by the SEM. The morphology showed that as the melt temperature increased, the rubber particles on the TPE became smaller and widely were dispersed. This behavior of rubber particles influenced on the increase of tensile strength.

A Study on Contact Dynamic Characteristics of Screw and Barrels in Injection Molding Machine (사출기 스크류와 배럴의 접촉거동 특성에 대한 연구)

  • 최동열;고영배;조승현;김청균;주성규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.212-220
    • /
    • 2000
  • Single flighted screw extrusion is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding. The temperature of polymer melts and injection pressure play a very important role in the injection molding machine. Thermal distortion and displacement of screw by temperature difference and injection pressure difference cause adhesive wear by metal-to-metal contact. In this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand dynamic characteristics of screw.

  • PDF