• Title/Summary/Keyword: Molding technology

Search Result 1,197, Processing Time 0.026 seconds

Fabrication of large-capacity injection mold with the insert core for molding cap (인서트 코어 타입 Cap 성형용 대용량 금형 제작에 관한 연구)

  • Jung, Woo-Chul;Heo, Young-Moo;Shin, Gwang-Ho;Yoon, Gil-Sang;Lee, Jeong-Won
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.16-21
    • /
    • 2008
  • In recent, the demands of household cases and disposable products is increased significantly because a living standard of newly-emerging nations was risen. Therefore, multi-cavity mold and stack mold for the realization of high-productivity have been researched in forefront nations. In this paper, CAE analysis for minimizing the mold core deformation was performed. Finally, 64 cavities injection mold for molding cap which has the insert-type core was fabricated according to the result of CAE analysis.

  • PDF

Prediction of Flash Generation in Two-Color Injection Molding using The Rapid Heat Cycle Molding Technology (금형 급속 가열-냉각이 적용된 이색사출성형의 플래쉬 발생 예측)

  • Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • In case of thin-wall two-color injection molding, flashing often occurs when molten polymer flows into small gap at the parting line in mold with high pressure or under the unbalanced clamping force condition. In this study, flashing was examined in the production of thin-wall notebook case with large area when the rapid heat cycle molding (RHCM) technology was applied to the two-color injection molding. The effects of the RHCM technology on the part properties and weld-lines were compared with conventional injection molding. The flashing caused by the clamping device of the two-color injection molding machine was examined and compared by experiments and CAE analyses.

A basic study on insert deformation characteristics of thin foil insert injection molding process (박판 Insert 사출성형시 Insert 변형 특성에 관한 기초 연구)

  • Jung, Woo-Chul;Shin, Gwang-Ho;Heo, Young-Moo;Yoon, Gil-Sang;Lee, Jeong-Won
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.5-10
    • /
    • 2008
  • Recently, ultra precision and light-weight micro products are needed in various industries. Injection molding products with metal insert material is often satisfied with light-weight and precision simultaneously. The researches on macro-size insert deformation have been performed but, a research on micro-size insert is meager. In this paper, the injection molding product with $300{\mu}m$ thin foil insert is designed and insert injection molding process is performed. Finally, the deformation of thin foil insert is analyzed according to insert feature and gate length.

  • PDF

Development of double injection mold for fuel-tube holder (자동차 연료튜브 홀더용 이중사출 금형·성형기술)

  • Kim, Gun-Hee;Yoon, Gil-Sang;Heo, Young-Moo;Jung, Woo-Chul;Shin, Kwang-Ho
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Double injection molding process is very efficient molding-method for molding the products which is consist of multi-materials. Fuel-tube holder which is necessary for automobil power train and circulation systems is composed of plastic and rubber materials to minimize the vibration and pulsation noises. In existing process, fuel-tube holder was made by the insert molding process or assembly process after molding. If fuel-tube holder is manufactured by double injection molding process, it may be realize to improve the product quality, efficiency of molding-process and retrenchment of manufacturing cost. In this study, for manufacturing fuel-tube holder by double injection molding process, the analysis of joining characteristics between PA6(polyamide 6) and TPE(thermoplastic elastomer) was executed and the double injectin mold for molding fuel-tube holder with core toggle mechanism was fabricated. Finally, fuel-tube holder was molding using fabricated double injection mold.

  • PDF

Micro Parts Machining and Injection Molding Technology (마이크로 금형 가공 및 사출성형에 관한 연구)

  • 최두선;제태진;이응숙;신보성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.452-457
    • /
    • 2003
  • As a fundamental study on developing elements with micro shape, micro mold parts machining and experiment of injection molding using it were performed. The ultra precision micro machining system with high functionality was fabricated, and utilized in the machining of micro parts. By using this machining system and micro end-mill tool, a micro circle column structure of high aspect ratio, diameter 60 $\mu\textrm{m}$, height 500 $\mu\textrm{m}$, was fabricated. And a micro lens molds were fabricated by using ball end-mill tool of 300 $\mu\textrm{m}$ diameter and diamond fly-cut tool of 150 $\mu\textrm{m}$ radius. A micro injection molding machine, which is clamping force 1.75 ton, injection capacity 2.8cc, was fabricated for injection molding experiment using micro molds. The injection molding experiment was performed by using the injection molding machine, micro cylinder structures and lens molds. This paper introduces these micro machining system and injection molding machine and demonstrates examples of injection molding using fabricated molds.

  • PDF

Injection Molding Experiments for Small Diameter Column (미소 원주의 사출 성형 실험)

  • 제태진;이응숙;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.85-88
    • /
    • 1995
  • Recently, the micro mold maching techining technology is developed by means of the mechanical and high energy beam process. It is possible to make the micro structure mold with high aspect ratio by the LIGA technology. This mode is used for mass production of plastic parts by the micro injection molding method. In this study, we intend to research on the basic technology of micro injection molding. As the result, we developed the injection molding technology for small column plastic parts which diameter is 500 .mu. m and 200 .mu. m respectively with wbout aspect ratio 20.

  • PDF

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

A Study on the Molding Technology for the Preform of Blow Molding Through Compression Molding (압축성형을 통한 블로우 성형품용 프리폼 성형기술 연구)

  • Choi, S.H.;Min, H.K.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.3-8
    • /
    • 2007
  • Novel compression molding system for preform has been developed in this study. The preforms for injection blow molding and injection stretch blow molding are being manufactured by injection molding. However it contains gate mark that affects the bottom crack in the PET bottle. The compression molded preform does not contain gate mark, thus the appearance quality of bottle has been increased and the residual stress near gate(bottom of the bottle) has been reduced. The thickness distributions, haze, and transmittance are well accepted for the preform. Also, flow characteristics of the resin between a core and cavity could be analyzed through computer simulation.

A Study on the Molding Characteristics of Injection Compression Molding Through Computer Simulation (컴퓨터 해석을 통한 사출압축성형의 성형특성에 관한 연구)

  • Chun, Y.H.;An, H.G.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.341-346
    • /
    • 2012
  • Injection molding is one of the widely used polymer processing operations. It is being used for not only conventional injection molding but gas injection molding, water injection molding, and injection compression molding. Injection compression molding involves injection and compression operation, and it gives uniform physical property and high dimensional quality of product. In this study, injection compression characteristics for various product shapes have been investigated by computer simulation. Product containing side wall showed not much effective in injection compression molding since wall thickness direction was perpendicular to the compression direction. Uniform and low shrinkage was observed in injection compression molding comparing conventional injection molding. Subsequently injection compression molding can be used for molding precise product. Optimal injection compression molding condition was obtained using design of experiment for plastic lens and the results were compared with conventional injection molding.

Double Side SMT and Molding Process Development for mPossum Package

  • Kim, ByongJin;Cho, EunNaRa;Kim, ChoongHoe;Lee, YoungWoo;Lee, JaeUng;Ryu, DongSu;Jung, GyuIck;Kang, DaeByoung;Khim, JinYoung;Yoon, JuHoon;Kim, Sun-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2016
  • 3-Dimensional System in Package (3-D SiP) structure (Amkor calls it mPossum-molded Possum) using double side Surface Mount Technology (SMT) and double side molding was evaluated in order to achieve small/thin form factor as well as good functionality by integration and double side layout. As the new platform on laminate substrate basis, molding process was challenge in mold flow balance at top and bottom side and package warpage control over the overall assembly process. There were two types of different molding process evaluated with 1) 1-step molding which was done at both side at the same time and 2) 2-step molding which was done at the conventional molding process twice. Mold simulation helped to narrow down the material selections and parameters available before actual sample build. There were many challenges for this first trial in design/ parameter and material types but optimized them to enable this structure.