• Title/Summary/Keyword: Molding system design

Search Result 236, Processing Time 0.026 seconds

Optimization of injection molding to minimize sink marks for cylindrical geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Yun-Suk;Je, Duck-Keun;Jeong, Young-Deug
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

  • PDF

Optimization of Injection Molding to Minimize Sink Marks for Cylindrical Geometry (원통형 플라스틱 성형품의 싱크 마크를 최소화하기 위한 사출성형 조건의 최적화)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.111-115
    • /
    • 2008
  • This paper describes the optimization of injection molding conditions to minimize sink marks. Sink marks, which refer to a small depression on the surface opposite a thick wall thickness, are often encounted in injection molded plastic parts. Part geometry, material properties and processing conditions during injection molding can affect the sink mark depth. We designed the runner system which is possible balanced filling to cavities using CAE program $Moldflow^{TM}$ and then obtained optimal processing conditions by Taguchi's Robust Design technique. By actual injection molding using optimized mold and molding conditions, it confirmed that sink mark depth decreased zero compared to 1mm level in the conventional mold and process.

A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments (다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구)

  • Young-Tae Yu;Sung-Min Mun;Sung-Young Jun;Kyoung-A Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly) (최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립))

  • 박성관;최동규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

A Knowledge-Based CAD System for Gate in Injection Molding (사출성형 게이트 설계용 지식형 CAD 시스템)

  • 허용정
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 2001
  • The synthesis of gates of injection-molded parts has been done empirically, since it requires profound knowledge about the gate design,. which is not available to designers through current CAD systems. GATEWAY is a knowledge module which contains knowledge to Permit non-experts as well as mold design experts to generate acceptable gate design of injection-molded parts. A knowledge-based CAD system is constructed by adding the knowledge module, GATEWAY, for gate synthesis and appropriate CAE programs for mold design analysis to an existing geometric modeler to provide designers, at the initial stage, with comprehensive process knowledge for gate synthesis. Performance analysis and feature-based geometric modeling.

  • PDF

Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens (초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass (칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작)

  • Oh, Seung Eun;Lee, Sun Kyu;Choi, Joong Kyu;Song, Kook Hyun;Baek, Jong Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • In this paper, for low cost infrared optical equipment, we design and fabricate an infrared optical system for an uncooled detector using PGM(Precision Glass Molding) lenses. The designed infrared optical system has a good athermalization, and the material of all of its lenses is a chalcogenide glass suitable for the PGM method. In addition, we also fabricate the same infrared optical system using SPDT(Single Point Diamond Turning) lenses in order to measure the optical performance of PGM lenses. We measure the MTF(Modulation Transfer Function) of the two infrared optical systems which use the PGM lenses and the SPDT lenses. And then we compare and analyze the images of them both. As a result, we find that they have only a very small difference in optical performance. If the use of PGM lenses increases, we expect to reduce the cost of infrared optical equipment.

Study on the Optimum Injection Molding Technology for Transformer (절연변압기의 최적사출성형기술)

  • Kim O.R.;Lee S.Y.;Kim Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.577-578
    • /
    • 2006
  • In this paper, the rubber behavior was calculated for obtaining the optimal process condition which is for producing a transformer with a given performance. This study was carried out using the computer simulation of injection mold filling and packing simulations. In order to remove the crack of product, proper locations of the runner and cooling system configurations could be determined. Based on these results, the transformer is developed by injection molding and guidelines of part design, mold design and processing conditions are established. Finally, the cast savings, cycle time reduce and improvement of productivity will be obtained.

  • PDF

A Study on Hopper Design for Minimizing the Wrapage Deformation at Injection Molding Processes (사출공정에서 휨 변형을 최소로 하는 호퍼 설계 연구)

  • Kim, Young-Suk;Lee, Eui-Joo;Son, Jae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • Injection molding is a high efficient manufacturing technology for producing plastic parts. On the other hand, the warpage of molded plastic parts is an ubiquitous problem in the injection molding process. The main objective of this study was to minimize the amount of warpage occurring in the injection molding process of a hopper of ATDPS made of crystalline polymer (PP) instead of amorphous polymer (ABS). The moldflow CAE simulation was conducted for the molding process of the hopper to clarify the injection moldability, shear rate, shear stress, warpage by changing the gate shape and the number of ribs installed on the top of the hopper flange. The wide gate shape of runner system and multiple rib installation were found to be useful for minimizing the warpage of the hopper. The validity of the CAE simulations was supported by the injection molding experiment for the optimized design case.