• Title/Summary/Keyword: Molding sand

Search Result 45, Processing Time 0.016 seconds

Investigation of Reclamation for Waste $CO_2$ Mold Sand of Steel Foundries in Busan and Gyeong Area (부산 ${\cdot}$ 경남지역 주강 공장의 $CO_2$ 주형 고사의 발생실태와 재생에 관한 연구)

  • Choi, Jun-Oh;Kim, Min-Seop;Choi, In-Seok;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • According to the investigation of waste $CO_2$ molding sand in the 15 steel foundries in Busan and Gyeong area, about 1 ton of waste $CO_2$ molding sand per ton of steel castings production was produced In order to reduce amount of $Na_2O$, Loss of Boiling (L.O.B), Loss of Ignition (L.O.I), Conductivity and PH which are present in the waste $CO_2$ molding sand below the reclamation effect, more than 50% of elimination for reclamation was required. It was found that the waste $CO_2$ molding sand does not contain a harmful component designated by industrial waste materials. Reclamation of the waste $CO_2$ molding sand was practically achieved by an abrasive-dry reclamation process. According to bench time of the sodium silicate-bonded $CO_2$ molding sand, reduction of compressive strength and surface stability index(S.S.I) become slowdown. Therefore, the reclaimed sand could be allowed the reuse of molding sand in $CO_2$ molding process including core sand.

The Effects of Vacuum-Molding Process Conditions on the Fluidity of A356 Alloy (A365 알루미늄합금의 유동도에 미치는 진공흡입조형 조건의 영향)

  • Oh, Young-Jin;Kim, Eun-Sik;Kim, Myung-Han;Hong, Young-Myung
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.173-178
    • /
    • 2005
  • The vacuum molding process is one of the clean-foundry molding-processes that can recycle molding sands repeatedly, because molding can be accomplished by introducing vacuum only among dry molding sands in flask. The effects of molding conditions such as sand grain fineness, vacuum pressure and coating thickness on the fluidity of A356 Al alloy were studied and the results was obtained that the fluidity length was decreased as the sand grain fineness number and coating thikness were decreased and the vacuum pressure was increased. A large amount of heat removal from the molten metal resulting from the vacuum suction during the vacuum molding process was the principal cause of this decrease in fluidity.

Development and Field Installation of a System of Simultaneously Removing Dust and Volatile Organic Compounds from Furan Process in Foundry (주물공장의 Furan 공정에서 발생하는 휘발성 유기 화합물 및 분진의 동시제거 시스템 개발 및 현장설치 연구)

  • Park, Jin Soo;Jung, Jae Hak;Lee, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.136-148
    • /
    • 2006
  • A foundry makes various machinery parts made by iron. For manufacturing machinery parts, they usually uses wooden mold with molding sand and pour the molten iron into wooden mold through inlet. A foundry have many processes including Furan process, In Furan process workers prepares a wooden mold in the molding sand. So they fixes wooden mold in sand housing and then they fill the molding sand in the sand housing. Molding sand should be sticky enough to sustain the shape of wooden mold, so several materials are needed to prepare the suitable molding sand. The first step of Furan process is making the molding sand with molding sand and Voltaic Organic Compounds (VOC) and the second step of Furan process is pour the molding sand into the wooden molding housing. This two step of process generated noxious VOC and various size of dust. So the process is very dirty and dangerous one. Because of these, Workers frequently shrink out of the plant. The company related with foundry usually faced on the difficult situation for engagement and always have shortage of hiring problem. Through this study, we developed a system which removes toxic VOC and dust simultaneously. We design and construct real system and install it at real plant. Before setting up this system, the working surroundings VOC (for formaldehyde) 15 ppm and Dust(for $PM_{10}$) $8,000{\mu}g/m^3$. After setting up this system, working surroundings is improved by VOC (for formaldehyde) 0 ppm, Dust(for $PM_{10}$) $4{\mu}g/m^3$, and the work evasion factor is removed. So we contribute to solve hiring problem of this company and increasing the productivity also.

A Study on the Mechanical Properties of Molding Sand with various Water/Clay Ratio. (수분(水分) : 점토비(粘土比)에 따른 주물사(鑄物砂)의 기계적(機械的) 성질(性質)에 관한 연구(硏究))

  • Lee, Kye-Wan;Lee, Choo-Lim
    • Journal of Korea Foundry Society
    • /
    • v.4 no.2
    • /
    • pp.89-95
    • /
    • 1984
  • A Study on the Mechanical Properties of Molding Sand with Various Water/Clay Ratio A standard sample of molding sand was prepared by adding a various amount of bentonite, which has water/clay ratio from 0.4 to 0.6, into artificial sand, Hanyoung #6. The results obtained by measuring the room temperature properties of green mold are as follows. 1. This compressive strength of green molds which have 4% and 10% of bentonite decreased with increasing water/clay ratio, but the maximum strengths of 4.3 (psi) and 7.2 (psi) were observed in the samples with 6%, 8% bentonite respectively when the water/clay is 0.45. 2. The optimum water/clay ratio for strength and permeability increased from 0.4 to 0.5 with increasing clay. 3. The green compressive strength was proportional to the hardness. 4. Deformation increased with increasing water/clay ratio. 5. Flowability decreased with increasing water/clay ratio and clay content in molding sand.

  • PDF

Study on the Application of Domestic Artificial Sands for the Self-hardening Molding Process by Using Furan Resin (후란자경성(自硬性) 주형용(鑄型用) 국산인조규사(國産人造硅砂)의 활용(活用)에 관(關)한 연구(硏究))

  • Choi, Chang-Ock;Lee, Sang-Yun
    • Journal of Korea Foundry Society
    • /
    • v.1 no.3
    • /
    • pp.19-29
    • /
    • 1981
  • An emphasis has been placed on the importance of selecting a sand for furan sand process, which ie affected by the properties of sand. Investigations have been carried out to use the domestic artificial sands for the furan sand process. For laboratory investigations, the sands have been prepared and tested for chemical analysis, loss on ignition, sieve analysis, AFS grain fineness number, grain shape, PH value, acid demand, surface shape, theoretical surface area, moisture absorption, crushing durability and compressive strength and S. S. I. of molding sands. Most commercial sands have been found to be able to be used. The main requirement of the sands has been shown to be that 3 or 4 screen sands, AFS no.40-70 (or 100), of low acid demand, good surface area and good grain shape require less resin and catalyst to give an adequate strength.

  • PDF

Effect of Core Sand on the Properties of System Sands Using Domestic Active Bentonite (국산 벤토나이트를 사용한 시스템사의 성질에 미치는 증자사의 영향에 관한 연구)

  • Cheon, Byoung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.9 no.5
    • /
    • pp.403-412
    • /
    • 1989
  • This study has been carried out to investigate into the properties of molding sands containing various core sands, $CO_2$, Shell, Furan, Pep Set and Cold Box, in the system sands using domestic active bentonite. The properties of system sands with 5% bentonite and 3% moistures containing baked core sands and no-baked core sands were varied by the ratio of core sands. The system sand containing no-baked core sands had been the poor bonding force and rough grain surface than those of the baked core sands. The L. O. I of system sand containing 30% organic binders core sands were more than inorganic binders core sands. It has been found that the no-baked core sands were necessary have to reclaim for using molding sand.

  • PDF

A Study on the Room Temperature Properties of Domestic Molding Sand depending on the Variations of Sand Grain Distribution and Grain Shape. (국산주물사(國産鑄物砂)의 입도분포(粒度分布)와 입형(粒形)에 따른 상온성질(常溫性質)에 관(關)한 연구(硏究))

  • Kang, Min-Jeon;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 1984
  • Green compressive strength, permeability, deformation, flowability, compactability and green hardness values at room temperature are dependable on the grain distribution and grain shape. The results obtained under constant moisture (4% for sand) and bentonite (8% for sand) were as follows; 1. With decreasing grain size, surface area of sand grain was increased. 2. With decreasing grain size, coefficient of angularity was increased. 3. As surface area increased from $8926.43cm^2$ to $21211.16cm^2$ , green compressive strength was increased from $210.93\;g/cm^2$ to $449.98\;g/cm^2$, hardness was increased from 76.7 to 82.3, but permeability was decreased from $411.7\;{\frac{\;cc\;{\cdot}\;cm\;}{atm\;{\cdot}\;cm^2\;{\cdot}\;min.}}$ to $113.7\;{\frac{\;cc\;{\cdot}\;mm\;}{atm\;{\cdot}\;cm^2\;{\cdot}\;min.}}$ 4. As surface area increased from $8926.43\;cm^2$ to $21211.16\;cm^2$, flowability was decreased from 82.3% to 80.8%, deformation was decreased from $67.1\;cm\;{\times}\;10^{-3}$ to $54.6\;cm\;{\times}\;10^{-3}$, but compactability was increased from 44.8% to 54.3%. 5. Room temperature properties of molding sand were affected by variation of surface area.

  • PDF

Application of Bulk Talc to Molding Material (주형재료로서 덩어리 활석의 이용)

  • Ha, Man-Jin;Lee, Zin-Hyoung;Lee, Sang-Soo;Eun, Hee-Joon
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 1994
  • The possibility of using bulk talc as molding material was reviewed and tested with the measurement of thermal properties and computer simulations. The measured thermal conductivity and heat diffusivity($k{\rho}c$) of talc were $2.4W/m^{\circ}C$ and $6.6{\times}10^6J^2/m^4^{\circ}C^2s$, respectively. Thermal properties of talc could be ranked between those of sand mold and iron mold. Talc transforms into cristobalite and enstatite at $910^{\circ}C$, During the transformation volume and structure change, cracks appear on the surface and distortion occurs. Therefore talc can be used for molding material below $910^{\circ}C$ if carefully treated. Computer simulation was carried out to test whether talc insert could promote directional solidification in sand mold and iron mold. In sand mold, it was possible to achieve directional solidification of thin plate casting with the length to thickness ratio of 15, if both iron insert and talc insert were used. In iron mold, it was possible to achieve directional solidification only with talc insert.

  • PDF

A Study on the Behavior of the Burn-On in Sand Mold (주형사의 소착거동에 관한 연구)

  • Gwak, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.3
    • /
    • pp.41-46
    • /
    • 1985
  • The behavior of the burn-on in sand mold has been investigated by varying the pouring metal, bonding materials, additive materials and molding sand. The results obtained from thease experiments are as follows; 1) The burn-on layer of silica sand decreased in order of carbon steel, gray cast iron and stainless steel, and thease burn layer proceeded mostly by producing FeO. 2) The burning reaction of silica sand mold in carbon steel castings declined with increasingly bentonite content, but water-glass scarcely took part in the burn-on reaction. 3) The addition of feldspar and seacoal to silica sand promoted the inhibiting burn-on. 4) The burn-on layer of sand mold decreased of silica sand, chromite sand and olivine sand.

  • PDF