• Title/Summary/Keyword: Moldflow Simulation

Search Result 46, Processing Time 0.032 seconds

Dimensional Optimization of Electric Component in Ultra Thin-wall Injection Molding by Using Moldflow Simulation (초박육 사출성형에서 Moldflow 시뮬레이션을 활용한 전자부품의 형상 최적화)

  • Lee, Jung-Hee;Bae, Hyun-Sun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.1-6
    • /
    • 2020
  • Micro-structure components applied to various disciplines are steadily demanded with lighter weight and better quality. This is because that ultra thin-wall injection molding has been paid attention with a lot of benefits such as cost reduction, shorter process period, and so forth. However, this technology is complicate and difficult to obtain high quality of products compared with conventional injection molding due to warpage caused by uneven shrinkage and molecular orientation. Since warpage of products directly affects product quality and overall performance of devices, it is essential to predict deformation behavior to achieve high precision of molded products. Therefore, this study aims to find out adequate thin-wall mold design for FPC connector housing by employing Moldflow simulation before application. In addition, experimental research is performed by using a fabricated mold structure based on simulated results to prove accuracy and reliability of the suggested simulation for warpage analysis.

An Analysis of Plastic Injection Molding Process for Automobile Gearbox Cover by Moldflow (Moldflow를 이용한 자동차 기어박스커버의 사출성형공정 해석)

  • Lho, Tae-Jung;Kim, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1494-1499
    • /
    • 2008
  • Plastic materials are utilized to the most important material of automobile interior-parts due to special characteristics that it is light, good strength and do not transmute quality even if pass long time. This study presented a preliminary analysis of fill time, weld line, air trap etc. for the plastic injection molding process of automobile gearbox cover through simulation using Moldflow.

A Study on Implementation of Al-Inserted Plastic Injection Molding Process for Automobile Interior-Parts (자동차부품용 알루미늄인서트 사출성형공정 구현에 관한 연구)

  • Lho, Tae-Jung;Kim, Kyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.43-51
    • /
    • 2008
  • Generally a plastic injection molding is a manufacturing process used to produce the various parts of complicated shape at low cost. The objective of this study is to implement a new plastic injection molding process with inserted Aluminum sheet, which is highly durable, light and luminous. Moldflow analysis and simulation of plastic injection molding process with inserted Aluminum sheet were carried out in order to predict optimal molding operation conditions. The experimental results in the Al-inserted plastic injection molding process were compared with the simulation results by Moldflow. Durability and reliability test results for trial products were satisfied to adopt the Al-inserted plastic injection molding process developed as manufacturing of automobile interior parts.

A study on the Injection Molding Process of the Case of Drum Type Washer using Moldflow (Moldflow를 이용한 드럼세탁기 케이스의 사출성형공정에 관한 연구)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 2009
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. This report investigates that the optimum injection molding condition for minimum of shrinkage. Molding shrinkage is occurred by several reasons such as thermal shrinkage, a hardening process and compressibility. This report concentrate on shrinkage by a hardening process. As Change a holding pressure and holding time, checked deflections of X, Y, Z directions by shrinkage based on same condition. In conclusion, it was found that holding pressure is stronger and holding time is longer, the deflection by shrinkage is smaller because injection molding needs enough time for cooling and high density. The FEM Simulation CAE tool. Moldflow, is used for the analysis of injection molding process.

A Study on the Injection Molding Process of Inline Skate Frame Using Moldflow (Moldflow를 이용한 인라인스케이트 프레임의 사출성형공정에 관한 연구)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2010
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. In this study, In-line skates are made of Al alloy and plastic materials to replace the frame for the optimization process is all about. I interpreted through mold design, Injection molding process that minimizes the runner and the gate dimension will determine the size and shape. Runner and gate dimensions of change based on availability of the product, I'll discuss the injection molding. This report investigates that the optimum injection molding condition for minimum of shrinkage. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

Plastic Flow Prediction of Automobile Door-Handle Using Injection Molding Simulation Programs (플라스틱 유동해석 프로그램을 이용한 자동차 도어 핸들의 유동예측)

  • 한성렬;강철민;유호종;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.295-298
    • /
    • 2004
  • Automobile door-handle is assembled with three parts that are base, skin and cover. Over-molding processing makes assembly of the base and skin. The skin part that was made by PVC polymer has various thickness. Plastic injection molding simulation of part including significant changed thickness as skin is an inaccuracy comparing with real injection molding. To solve this problem, two commercial flow prediction software that are Moldflow MPI and MAPS 3D were used in this study. Simulations were conducted for three types mesh. Taguchi method was applied for simulation experiments. It will be need to compare with simulation results and real over-molding behavior in the near future.

  • PDF

Optimizing the Injection Molding Process for Cooling Filter Using Computer Simulation and Taguchi Methods (컴퓨터 시뮬레이션과 다구치 방법을 이용한 냉각 필터 사출성형 공정의 최적화)

  • Lee, Seung-Hoon;Min, Byeong-Hyeon;Kim, Byeong-Gon
    • IE interfaces
    • /
    • v.15 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • The injection molding process is a one of the most efficient techniques for manufacturing plastic parts of complex shape at low cost. In injection molding, molten plastic material is injected into the mold and cooled. Selection of molding conditions greatly affects the quality of molded parts. In this case study, we attempted to optimize the injection molding condition for a cooling filter using Taguchi experimental design methodology. The injection molding experiments were carried out using the Moldflow simulation software.

A Study on the Injection Molding Process for Manufacturing of Alternator Pulley (얼터네이터 풀리의 제조를 위한 사출성형공정에 관한 연구)

  • 민병현;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • So far, an alternator pulley has been formed by cold forging and casting with a metal due to the necessity of its high strength. Various advantages such as the light weight, the low cost, and the high productivity can be obtained by the injection molding process using engineering plastics. Engineering plastics have an excellent performance in the characteristics off strength vs. weight, a good forming ability and a productivity. The object of this study is to develop an alternator pulley, which has been made with a metal, using the injection molding process based on Taguchi methods. A sink mark is considered as a characteristic parameter to improve the quality. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

Injection Molding and Structure Analysis of Inline Skate Frames Using FEA (유한요소해석을 이용한 인라인스케이트 프레임의 사출성형해석 및 구조해석에 관한 연구)

  • Park, Chul-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1507-1514
    • /
    • 2011
  • Injection molding is the most commonly used process that uses plastic material. Today, the uses of plastic material are continuously increasing, and the range of application is also being extended by the development of novel materials. An inline skate consists of 4 components: the boot, frame, wheel and brake. Among these components, the frame is the most critical. The injection formability for a variety of injection materials for inline skate frames was studied. We also studied the injection formability of the product for various sizes of the runner and gate. In this study, injection molding analysis was performed using MOLDFLOW, and structural analysis was performed using ANSYS.

A Study of Brightness and Residual Stresses Depending on Thickness of LCD Light Guide Plate (LCD 도광판 두께에 따른 휘도 및 잔류응력에 관한 연구)

  • Lee, Joong-Won;Park, Myung-Kyun;Kim, Jung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.38-44
    • /
    • 2008
  • Light guide plate is one of most important components which are composed of back light unit, affecting the quality and performance of LCD. Average brightness and uniformity are especially key factors for designing the light guide unit. These qualities are affected and controlled by the pattern being attached to the back of light guide unit. In order to obtain high brightness and uniformity the optimized pattern design is adopted for LGP. In this study, optimized molding condition for LGP with 0.4 mm thickness was obtained by using the Moldflow simulation software and the optimized pattern for better brightness uniformity was designed for the thickness of the 0.4 mm by trial and error method. The brightness was measured for the different LGP thicknesses and the residual stress analysis was performed for 0.4 mmthickness by the photoelasticity and the results are compared with 0.5 mm, 0.6 mm thickness.