• 제목/요약/키워드: Mold manufacturing

검색결과 971건 처리시간 0.024초

귀 체온계 측온부의 이중 사출 공정 최적화에 관한 연구 (A study on optimization of the double injection process for temperature measuring part of an ear thermometer)

  • 백승익;정욱철;김인관;신광일;김태완
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2022
  • The importance of fast and accurate body temperature measurement with a portable thermometer is increasing. In order to reduce the temperature measurement response time of the infrared ear thermometer, it is very important to develop a structure for a thermometer having an efficient heat transfer path. Most of the existing ear thermometers are single structures that do not consider thermal efficiency, which may delay measurement time and reduce measurement accuracy. Therefore, in this study, the upper part of the thermometer in contact with the ear is made of a thermally conductive material, and the lower part of the thermometer is made of a thermal barrier material so that heat can be concentrated on the infrared sensor of the thermometer by blocking the upper part of the heat. For the efficiency of production, it was intended to be manufactured through the double injection process, and for this purpose, in this paper, the optimal process parameters were derived through the double injection process analysis.

원심력을 이용한 원통형 증기화 증폭 시트 제작 연구 (A study on the manufacture of cylindrical vaporization amplification sheets using centrifugal force)

  • 고민성;위은찬;윤이섭;이주형;백승엽
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.43-49
    • /
    • 2022
  • As technologies in various industrial fields develop, high-quality parts are required. In the past, precision parts were produced by the contact machining method, but the contact machining method has clear limitations. In order to solve this problem, research on a non-contact processing method has been conducted, and laser processing and electric discharge processing are representative. However, the non-contact method has a problem in that productivity is insufficient, and there is a problem that it takes a lot of time to continuously process microholes. Researchers have developed an electron beam drilling equipment for continuous processing of fine holes, and a vaporization amplification sheet to increase the processing efficiency of the equipment. In this study, a cylindrical vaporization amplification sheet using room temperature curing type silicon was fabricated, and the metal distribution and thickness uniformity of the produced sheet were analyzed. In order to manufacture a cylindrical vaporization amplification sheet, an equipment capable of using centrifugal force was developed, and a sample in which metal powder was evenly distributed and a constant thickness was produced.

MR Polishing을 이용한 커버글라스의 굽힘강도 향상에 관한 연구 (A study of minimizing edge chipping of coverglass using MR Polishing)

  • 이정우;김지훈;임동욱;하석재
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.50-54
    • /
    • 2022
  • Coverglass of electronic equipments is thinner and slimmer, so the glass must have good bending strength. In these days, the polishing edge of glass is used by solid tool like grinding wheel. But solid tool leave micro crack or edge chipping in edge of glass. MR polishing is an optimal method by polishing edge of glass. MR polishing is used MR fluid that is a liquid tool. MR polishing doesn't leave tool path or residual stress, micro crack and edge chipping unlike grinding wheel polishing. In this paper, the results of grinding and MR polishing were compared and analyzed to improve bending strength by minimizing edge chipping of cover glass. It was derived that the depth and size of cracks have a significant influence on the bending strength of the glass edge. The edges of the glass using MR grinding were analyzed to have a better surface and higher bending strength than the glass using abrasive wheel grinding. It was confirmed that MR polishing had an effect on strength improvement by effectively removing cracks in the specimen.

운송 차량용 판 스프링의 파손 해석 (Damage Analysis of Leaf Spring for Transport Utility Vehicles)

  • 김태송;강석희;권영국;윤서현;남기우
    • 한국산업융합학회 논문집
    • /
    • 제25권6_2호
    • /
    • pp.1047-1053
    • /
    • 2022
  • The leaf spring for a truck absorbs shocks or vibrations from the road surface while driving with the elastic force of the material and prevents the shock from being transmitted to the vehicle body. It is subjected to cyclic stress, and fatigue fracture occurs frequently. This study analyzes fractured leaf spring from a 25 ton truck that has been operating for about a year. In the fractured portion, which is the origin of crack, inclusions were observed, and fatigue failure was caused by cyclic stress. In the stress calculation and FE analysis, the stress at the center of the leaf spring was obtained to be 54~65% of the yield strength of the base material and damaged material. It is most important to prevent the mixing of impurities in the steel manufacturing for leaf springs. The large stress portion of the leaf spring needs to introduce compressive residual stress by peening etc.

이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석 (Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding)

  • 유형민
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

통기성을 개선한 개인용 이동장치 헬멧 구조 설계 (Design of a Helmet with Improved Ventilation for Personal Mobility)

  • 오진산;권성준;홍민기;정성원
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.7-16
    • /
    • 2022
  • A helmet is essential for safety when operating personal mobility. However, user's actual helmet wear rate is low due to the inconvenience of wearing and poor ventilation. In this study, a new helmet structure with improved ventilation for personal mobility devices was designed. To design a new structure with improved breathability compared to the existing helmet while satisfying the safety regulations for the helmet, a generative design method was applied to the shock-absorbing liner of the helmet. In addition, other materials were applied to create a structure with improved ventilation while maintaining safety. The generated design result was verified for shock absorption through simulation. As a result of the study, EPS, the current material was replaced with CFRP and Kevlar, and the structure was changed. This design was judged to satisfy safety regulations against impact. The new helmet structure is expected to improve the helmet usability for personal mobility and increase the helmet wear rate of users.

다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구 (A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments)

  • 유영태;문성민;전성영;김경아
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구 (A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module)

  • 박영덕
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

공공장소에서의 전기 자동차 충전기 디자인 콘셉트 제안 (Proposed concept design for electric vehicle charger in public places)

  • 진아영
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.13-19
    • /
    • 2022
  • Recently, electric vehicles are gaining popularity among many domestic and foreign users due to their eco-friendly advantages of reducing fine dust and environmental greenhouse gases. As the demand and supply of electric vehicles increase, the demand for electric vehicle charging infrastructure is also growing together. Many users are experiencing inconvenience due to poor charging infrastructure, which makes them hesitant to buy electric vehicles. Research on the user experience of chargers in apartment complexes, a common residential type in Korea, is being conducted somewhat, but research on the design of electric vehicle charging devices in public places is insufficient. The purpose of this research is to identify user requirements and complaints based on the product design of the electric vehicle charger in public places and propose a new electric vehicle product design concept that meets the requirements. The research method understood the charging base and status of electric vehicles in public places through literature research and examined and analyzed the characteristics and problems of product design cases that improved the charging problem of electric vehicles recently released in the market. It is intended to identify and analyze the problems of the charging device product design through user interviews, a qualitative research method, and based on this, it is intended to propose a user-centered product design concept that improves major complaints.

판재 점진 성형 공정의 정밀도 향상을 위한 다이 구조 개선에 대한 연구 (A study on the die structure for the improvement of the geometric accuracy in the single point sheet incremental forming process)

  • 이원준;김민석;선민호;유제형;이창환
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.53-59
    • /
    • 2022
  • Unlike other press forming processes, ISF (Incremental sheet forming) doesn't require a punch and die set. However, during the ISF processes unwanted bending deformation occurred around the target geometry. This paper is aimed to analyze the effect of the die structure, which is supported by bolts, on the geometric accuracy of the ISF processes. In this research, the ISF processes with Al5052 sheet of 0.5 mm, the tool diameter of 6 mm and the stepdown of 0.4 mm was employed. L-shaped, step-shaped, relief-shaped geometry were employed in experiments. Sectional view and the plastic strain were compared. From this research we find out that the bolt supported ISF processes increases the geometric accuracy of products very effectively.