• Title/Summary/Keyword: Mold manufacturing

Search Result 961, Processing Time 0.025 seconds

Measurement of Residual Stress Using Photoelasticity and Computer Simulation of Optical Characteristics in a Transparent Injection Molded Article (광탄성을 이용한 투명한 사출성형품의 잔류응력측정 및 광학적 특성의 컴퓨터 모사)

  • Hong, Jin-Soo;Park, Seo-Ri;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Pressurized high temperature plastic resin flows into the cavity of mold and is solidified in injection molding process. Residual stress is being developed in injection molded part because of high temperature variations and high pressure. Developed residual stress relaxes as time goes. Consequently this makes part deformed and deteriorates quality of product. A measurement method of residual stress for injection molded transparent articles has been investigated using photoelasticity. Light, a composite of electromagnetic waves, is purified into a single wave by a polarized film. When this wave passes through the specimen, birefringence is developed according to the level of residual stress in the specimen and color fringed pattern appears after the second polarized film. Residual stress in the injection molded transparent flat a part has been measured quantitatively using the color fringed pattern. Optical characteristics have been a part also predicted by computer simulation and compared with experimental results.

Light transmittance of CAD/CAM ceramics with different shades and thicknesses and microhardness of the underlying light-cured resin cement

  • Jafari, Zahra;Alaghehmand, Homayoon;Samani, Yasaman;Mahdian, Mina;Khafri, Soraya
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the effects of the thickness and shade of 3 types of computer-aided design/computer-aided manufacturing (CAD/CAM) materials. Materials and Methods: A total of 120 specimens of 2 shades (A1 and A3) and 2 thicknesses (1 and 2 mm) were fabricated using VITA Mark II (VM; VITA Zahnfabrik), IPS e.max CAD (IE; IvoclarVivadent), and VITA Suprinity (VS; VITA Zahnfabrik) (n = 10 per subgroup). The amount of light transmission through the ceramic specimens was measured by a radiometer (Optilux, Kerr). Light-cured resin cement samples (Choice 2, Bisco) were fabricated in a Teflon mold and activated through the various ceramics with different shades and thicknesses using an LED unit (Bluephase, IvoclarVivadent). In the control group, the resin cement sample was directly light-cured without any ceramic. Vickers microhardness indentations were made on the resin surfaces (KoopaPazhoohesh) after 24 hours of dark storage in a $37^{\circ}C$ incubator. Data were analyzed using analysis of variance followed by the Tukey post hoc test (${\alpha}=0.05$). Results: Ceramic thickness and shade had significant effects on light transmission and the microhardness of all specimens (p < 0.05). The mean values of light transmittance and microhardness of the resin cement in the VM group were significantly higher than those observed in the IE and VS groups. The lowest microhardness was observed in the VS group, due to the lowest level of light transmission (p < 0.05). Conclusion: Greater thickness and darker shades of the 3 types of CAD/CAM ceramics significantly decreased the microhardness of the underlying resin cement.

Dynamic Optimization of o Tire Curing Process for Product Quality (제품품질을 위한 타이어 가황공정의 동적 최적화)

  • Han, In-Su;Kang, Sung-Ju;Chung, Chang-Bock
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.321-331
    • /
    • 1999
  • The curing process is the final step in tire manufacturing whereby a green tire built from layers of rubber compounds is formed to the desired shape and the compounds are converted to a strong, elastic materials to meet tire performance needs under elevated pressure and temperature in a press. A numerical optimization procedure was developed to improve product quality in a tire curing process. First, a dynamic constrained optimization problem was formulated to determine the optimal condition of the supplied cure media during a curing process. The objective function is subject to an equality constraint representing the process model that describes the heat transfer and cures kinetic phenomena in a cure press and is subject to inequality constraints representing temperature limits imposed on cure media. Then, the optimization problem was solved to determine optimal condition of the supplied cure media for a tire using the complex algorithm along with a finite element model solver.

  • PDF

Comparative analysis of strain according to the deposition of a constant temperature water bath of a denture-base artificial tooth produced using three-dimensional printing ultraviolet-curing resin (3D 프린팅용 광경화 수지를 사용하여 제작한 의치상용 인공치아의 항온수조 침적에 따른 변형률 비교 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young;Kim, Jae-Hong;Yang, Cheon-Seung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.202-207
    • /
    • 2020
  • Purpose: This study is a comparative analysis of the strain according to deposition in a constant temperature water bath after manufacturing ultraviolet (UV)-cured artificial teeth. Methods: As a control group, 10 ready-made artificial teeth were selected as the first molar on the right side of the maxilla (RT group). Silicone was used as a duplicate of the artificial denture teeth. Experimental teeth were prepared in two groups using the prepared silicone mold. In the first experimental group, the UV-cured resin was injected into the negative silicone, followed by irradiation with a UV-curing machine for 5 minutes (5M group). In the second experimental group, the UV-cured resin was injected into the negative silicone, and then irradiated for 30 minutes using a UV-curing machine (30M group). The one-way ANOVA was performed, and post-test was analyzed by Tukey. Results: When immersed in a water bath for 15 days, it was found to be -0.3% in the RT group, -0.6% in the 5M group, and -0.7% in the 30M group. The results revealed -0.2% in the RT group, 0.2% in the 5M group, and -0.2% in the 30M group when they were in the bath for 30 days. Conclusion: In the water bath, the swelling was greater when deposited for 1 to 15 days, but was less when deposited for 15 to 30 days.

Fixed prostheses fabricated by direct metal laser sintering system: case report (Direct metal laser sintering 방식을 이용하여 제작한 다양한 고정성 보철물 수복 증례)

  • Baek, Ju-Won;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.246-254
    • /
    • 2016
  • Nowadays, 3 dimentional (3D) printing, especially Direct Metal Laser Sintering (DMLS) system is used in dentistry. DMLS system has recently been introduced for fabrication metal framework for metal ceramic crowns to overcome the disadvantages of the casting method and computer aided design/computer aided manufacturing (CAD/CAM) milling system. DMLS system uses a high-temperature laser beam to selectively heat a substructure metal powder based on the CAD data with the framework design. A thin layer of the beamed area becomes fused, and the metal framework is completed by laminating these thin layers. Utilizing DMLS system to fabricate fixed prostheses is expected to achieve free-from shaping without mold and limitations from cutting tools, fabricate prostheses with complex geometry, prevent distortion and fabrication defects that inherent to conventional fabrication methods. The purpose of this case report is to demonstrate various fixed prostheses such as long span fixed prostheses, post to achieve satisfactory results in functional and esthetic aspects.

Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory (산화물계 SEN내화물의 슬래그 라인부 침식특성 연구)

  • Sung, Young Taek;Son, Jeong Hun;Lee, Sung Seok;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing $ZrO_2$, $Al_2O_3$, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at $1000^{\circ}C$ for 3 h in $N_2$ atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at $1550^{\circ}C$ for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at $1000^{\circ}C$ and $1550^{\circ}C$ for 2h. $ZrO_2$-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, $ZrO_2-Al_2O_3$-C and $ZrO_2$-MgO-C showed better resistance than $ZrO_2$-C in the slag corrosion test. The diameter variation index of $ZrO_2$-C refractory was 16.1 at $1000^{\circ}C$ for 2 h. The diameter variation index of the $ZrO_2-Al_2O_3$-C refractory was larger than that of the $ZrO_2$-C refractory at $1550^{\circ}C$ for 2 h.

The excimer laser ablation of PET for micro-mold insert - The control of cross sectional shape using Fourier optics - (마이크로 금형 제작을 위한 PET의 엑시머 레이저 어블레이션 - 퓨리에 광학을 이용한 가공 단면 형상의 제어 -)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.19-28
    • /
    • 2003
  • The manufacturing process for the microfluidic device can include sequential steps such as master fabrication, electroforming, and injection molding. The laser ablation, using masks, has been applied to the fabrication of channels in microfluidic devices. In this research, an excimer laser was used to engrave microscopic channels on the surface of PET (polyethylene terephthalate), which shows a high absorption ratio for an excimer laser beam with a wavelength of 248 m. When 50-${\mu}{\textrm}{m}$-wide rectangular microscopic channels are ablated with a 500 ${\times}$ 500 ${\mu}{\textrm}{m}$ square mask at a magnification ratio of 1/10, ditch-shaped defects were found in both corners. The measurement of laser beam intensity showed that a coherent image in the PET target caused such defects. Analysis based on the Fourier diffraction theory enabled the prediction of the coherent shape at the image surface as well as the diffraction beam shape between the mask and the image surface. It also showed that the diameter of the aperture had a dominant effect. The application of aperture with a diameter of less than 3 mm helped to eliminate such defects in the ablated rectangular microscopic channels on PET without such ditch-shaped defects.

  • PDF

Design and Implementation of the Front part of an Agricultural Electric Vehicle based on Vacuum Forming using Computational Structural Analysis

  • Lee, Hun-Kee;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.45-51
    • /
    • 2021
  • In this paper, we propose a 3D design method of the vacuum forming method of the front part to improve the lightness and production efficiency of agricultural electric vehicles. For agricultural electric vehicles, lightness and production efficiency are more important than the strength of materials for collision protection. In this paper, we propose a vacuum forming design method that can replace complex machining processes such as laser machining, bending, and painting. The main purpose of this research is to improve product stability, productivity and convenience through 3D design of the front part and development of vacuum forming mold technology. Research procedure follows the 3D modeling of the front part using CATIA, finite element analysis for the structural stability using ABAQUS, manufacturing prototype for the investigation of the dimensions using 3D scanner and actual driving test under agricultural electric vehicle usage environment. The results verifies the proposed 3D design method of the vacuum forming method and are expected to be widely used by agricultural workers through the simplification of the production process of agricultural electric vehicles.

A Study on Improving the Non-Combustible Properties of High-Density Fiber Cement Composites (고밀도 섬유 시멘트 복합체 불연특성 개선에 관한 연구)

  • Song, Tae-Hyeob;Jang, Kyong-Pil
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • The high-density fiber composite manufacturing method by the extrusion molding method has the characteristic that continuous production is possible, and the product is molded through a mold forming a specific cross-section. OPC is used as a defect material, an appropriate amount of SiO2 is supplied for CaO reaction activity, and high density and high strength are expressed through steam and autoclave curing. However, due to the use of organic reinforcing fibers, the flame duration exceeds the regulations during the non-combustible performance test, making it difficult to secure performance. In this study, the product was produced by mixing alkali-resistant organic fiber and fly ash having voids as a binder by replacing the existing polypropylene fiber. appeared to be possible.

A Study of the Development of Gardening Products Converged with Cultural Contents of Kongjwi Patjwi (콩쥐 팥쥐전의 문화콘텐츠를 융합한 가드닝 제품 개발 연구)

  • Choi, Jung-Hwa;Lee, Myung-Ah
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.501-508
    • /
    • 2019
  • Today, home gardening is in the spotlight. Therefore, the necessity of developing a new type of gardening product was raised according to the consumer's desires. This study, the contents were developed using sparrows, a helper who helped the bean rat's grain-cracking task among the characters of 'kongjwi patjwi'. The cultural contents convergence product is a lid production that is used at the end of the plant support. The fabrication method was designed using UG NX program after design research, and after printing by 3D polyjet method, mold was made and cast into silicon and resin. Through product manufacturing, we could confirm the public's interest in the possibility of new products and creativity. In the future, it is expected that the development of products incorporating cultural contents through various cultural archetypes will be activated, contributing to the enhancement of economic added value and national brand value.