• Title/Summary/Keyword: Mold cavity shape

Search Result 44, Processing Time 0.028 seconds

Numerical Analysis of Effects of Mold Cavity Shape on Bubble Defect Formation in UV NIL (UV NIL공정에서 몰드 중공부 형상과 기포결함에 대한 수치해석)

  • Lee, Hosung;Kim, Bo Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.596-602
    • /
    • 2018
  • Nanoimprint lithography (NIL) is an emerging technology that enables cost-effective and high-throughput nanofabrication. In ultraviolet (UV) NIL, low-cost and high-speed production can be achieved using a non-vacuum environment at room temperature and low pressure. However, there are problems with the formation of bubble defects in such an environment. This paper investigates the shape of the mold cavity and the bubble defect formation in UV NIL in a non-vacuum environment. The bubble defect formation was simulated using two-dimensional flow analysis and the VOF method for commonly used cavity mold shapes (rectangular, elliptical, and triangular). The characteristics of the resist flow front and various contact angles were also analyzed. The shape of the mold cavity had a very significant effect on the bubble defect formation. For all cavity shapes, a smaller contact angle with the mold and larger contact angle with the substrate decreased the possibility of bubble defect formation. The elliptical shape was the most effective for preventing bubble defect formation.

Degree of Filling Balance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 균형 충전도)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.144-149
    • /
    • 2008
  • Configuration of filling imbalance which is originated from imbalanced share rate of melt on runner is changed by runner layout, runner shape, material property, injection pressure, injection speed, melt temperature and mold temperature. In this paper, we conducted a study of runner layout and shape that are main factors of filling imbalance. Other factors such as the sharp corner effect and the groove corner effect are recently released were also considered. The results of study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Especially, this study suggests a new runner system for filling balance by adapting the two effects of unary branch type runner at multi cavity mold and theoretical investigated flow in the sharp corner type runner.

A study on multi-cavity injection mold and molding elemental technology for plastic product of high precision tolerance (고정밀 플라스틱 제품 성형을 위한 다수 캐비티 사출금형 및 성형 요소기술에 관한 연구)

  • Jong-In Son;Chul-Ki Kim;Byeong-Uk Song
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.57-62
    • /
    • 2023
  • As a representative method for mass production, a multi-cavity type mold capable of simultaneously molding products of the same shape can be applied. It has the advantage of improving the productivity from several times to several tens of times, but it may cause disadvantages which is the quality deviation with each cavity. This study, therefore, has tried to increase the cavity filling balance by using a melt flipper and a flow distance control part in the runner part of the mold. Along with this, the design and manufacturing of air vents during injection molding have been verified through experimental methods to achieve a higher level of multi-cavity filling balance and dimensional accuracy.

Effects of Core Pin Shape on the Filling Imbalances of PA6 Molding (러너 코어핀 형상이 PA6 성형품의 충전불균형도에 미치는 영향)

  • Jeong Y.D.;Kang C.M.;Je D.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.706-709
    • /
    • 2005
  • Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in multi-cavity injection mold. These filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during the injection molding processing. This paper presents a solution of these filling imbalances by using runner core pin which creates a symmetrical shear distribution within runner and the effects on filling imbalance when modifying a shape of runner core pin. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed. In addition we investigated how filling imbalances were affected by shape of runner core pin.

  • PDF

A New Runner System Melt-Buffer for Filling Balance in Injection Mold (사출금형에서 균형충전을 위한 새로운 러너시스템 멜트버퍼)

  • Jeong, Y.D.;Jang, M.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.122-127
    • /
    • 2009
  • The injection mold with multi-cavity is essential for mass production of plastic products. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. However, despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in injection molding. To solve these problems, many studies such as Melt Flipper, RC Pin, and others have been presented. The results of these studies have been an effect on filling balances in multi-cavity molds. But, those have had a limitation that additional insert parts must have existed in the mold. In this study, a new runner system is suggested for filling balance between cavity to cavity using "Melt-Buffer" with simple change of runner shape. A series of simulation to confirm feasibility of Melt-Buffer's effects was conducted using injection molding CAE program. Also, a series of injection molding experiment was conducted using plastic materials such as ABS and PP. As results of this study, feasibilities of filling balances by Melt-Buffer were confirmed.

A Study on CAM System for Machining of Sculptured Surface in Mold Cavity(1) - Generation of High Precision Machining Data for Curved Surfaces - (3차원 자유곡면 가공용 CAM시스템의 개발에 관한 연구(1) -고정도 곡면가상 정보 생성을 위한 이론적 고찰-)

  • 정희원;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.92-100
    • /
    • 1994
  • For generating NC machining data automatically, it is important to handle computer models such as geometric shape data including engineering specifications for the mechanical part to be manufactured. We proposed unique CAM system for a personal computer that can define the geometric shape in an ease manner and machine the sculptured surfaces of a mold cavity. In this paper, the theoretical basis of generation of high precision machining data for a mold cavity is obtained. The first is geometric modelling, and the second is high precision machining with an optimized tool path algorithm satisfying given tolerance limits. Especially, the bicubic Bezier basis function is adopted for a geometric modelling.

  • PDF

A study on CAM System for Machining of Sculptured Surface in Mold Cavity(2) -Machining Algorithm and Construction of the System- (3차원 자유곡면 가공용 CAM시스템의 개발에 관한 연구 (2) -가공 알고리즘 및 시스템 구성-)

  • 정희원;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 1995
  • In this paper, we propose unique CAM system for personal computer that can define the geometric shape in an ease manner and to machine the sculptured surfaces of a mold cavity. In this CAM system, if a user inputs simple initial information such as the control points for a shape definition and a radius of tool etc., all of the procedures for machining will be processed automatically by the CAM system as well as NC commands and simulations. In addition to this, the environment of the CAM system is composed of "C" language for an easy extention of aditional modules. Also, the CAM system with the following characteristics was developed. 1. The optimum tool path satisfying given tolerance limits reduces the time for the high precision machining of sculptured surface in a mold cavity. 2. The generated NC commands can be transmitted to NC directly by the CAM system through RS-232C from PC.C from PC.

  • PDF

Flow Analysis of Filling Imbalance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 충전불균형 유동해석 모델)

  • Jang, Min-Kyu;Go, Seung-Woo;Kim, Yeong-Min;Noh, Byeong-Su;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.16-20
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing; However, even though geometrically balanced runner is used, filling imbalances have been observed. In these day, the CAE has been used widely in injection molding. However, CAE with fusion mesh can't indicate such as jetting, flow mark and filling imbalance in multi cavity mold. In this study, we investigated the filling imbalance according to runner shapes by CAE analysis. As a result in CAE, in case of binary branch runner system, filling imbalance was indicated between cavity to cavity, but the flow pattern of each cavity uniformed in unary branch runner system.

  • PDF

PERFORMANCE EVALUATION OF COOLING CHANNELS IN A PLASTIC INJECTION MOLD MODEL (사출금형의 냉각채널 성능 평가)

  • Kim, H.S.;Han, B.Y.;Lee, I.C.;Kim, Y.M.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.53-57
    • /
    • 2012
  • Design of the cooling channels of a plastic injection mold affects the quality and the productivity of the injection processes. In the injection process, the melted resin with high temperature enters the mold cavity, and just after the cavity is filled the heat should be dissipated through the cooling channels simultaneously. The purpose of this study is to analyse the heat transfer phenomenon and to estimate the temperature distribution in the mold to evaluate the cooling effect of the channels. The injection mold is assumed to have cooling channels of circular cross section and each channel has the same coolant flow rate. and The cavity has a rectangular shape. The results show that as the cooling channels get closer to the cavity surface, the cooling efficiency increases as might easily be guessed. However, due to the final hot resin flow from the gate an intensive cooling is required in that region.