• 제목/요약/키워드: Mold Heating

검색결과 172건 처리시간 0.022초

재료의 선택적 사용에 의한 금형의 국부적 유도가열기법 (Localized Induction-Heating Method by the Use of Selective Mold Material)

  • 박근;도범석;박정민;이상익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

선택적 유도가열을 사용한 사출금형의 국부가열기술 (Local Heating of an Injection Mold using Selective Induction Heating)

  • 도범석;박정민;엄혜주;박근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1119-1123
    • /
    • 2008
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a noncontact procedure. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has difficulty in efficient mold temperature control due to the restriction of an induction coil design suitable for the given mold shape. The present study proposed a localized mold heating method by means of selective use of mold material. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The feasibility of the proposed heating method is investigated through an experimental measurement in terms of the heating efficiency on the localized mold surface.

  • PDF

고주파 유도가열을 사용한 급속 금형가열에 관한 연구 (A Study on Rapid Mold Heating System using High-Frequency Induction Heating)

  • 정희택;윤재호;박근;권오경
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

전화기 케이스 외관의 Weldline 제거를 위한 금형 급속 가열-냉각 기술 개발 (Development of rapid mold heating & cooling technology to remove weldline on surface appearance in telephone case)

  • 차백순;박형필;이상용;김옥래;이승욱;이병옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.439-443
    • /
    • 2008
  • Painting process or coating with acrylic film may improve the surface defects of injection molded parts deteriorated by weldlines. flow marks. and etc. However such processes increase the production costs and increase environmental problems. Recently various types of rapid mold heating & cooling technology have been developed in order to improve surface quality of products. In this study. the heating & cooling performance of a telephone case mold is investigated by heat transfer analysis, in which the rapid mold heating & reeling technology is applied. The surface temperature of the mold was measured using thermal image camera and compared with analysis results. The influence of the rapid mold heating & cooling technology on weldline appearance and cycle time increase was also examined.

  • PDF

고주파유도 급속 금형가열 과정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold)

  • 손동휘;서영수;박근
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

급속 금형가열 시스템 개발을 위한 고주파 유도가열 과정의 유한요소해석 (Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System)

  • 황재진;권오경;윤재호;박근
    • 소성∙가공
    • /
    • 제16권2호
    • /
    • pp.113-119
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers a finite element analysis of the induction heating process which can rapidly raise mold temperature. To simulate the induction heating process, the electromagnetic field analysis and transient heat transfer analysis are required collectively. In this study, a coupled analysis connecting electromagnetic analysis with heat transfer simulation is carried out. The estimated temperature changes are compared with experimental measurements for various heating conditions.

고주파 유도가열을 적용한 사출성형품의 웰드라인 개선 (Improvement of Weldlines of an Injection Molded Part with the Aid of High-Frequency Induction Heating)

  • 서영수;손동휘;박근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.437-440
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner. Thanks to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding. The present study applies the high-frequency induction heating for elimination of weldlines in an injection-molded plastic part. To eliminate weldlines, the mold temperature of the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through experiments, the maximum temperature of $143^{\circ}C$ is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than $60^{\circ}C$. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated.

  • PDF

전산모사 프로그램을 이용한 E-MOLD의 Heating Line 배치의 최적화 설계에 관한 연구 (Development of simulation method for heating line optimization of E-Mold by using commercial CAE softwares)

  • 정재엽;김동학
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1754-1759
    • /
    • 2008
  • 일반사출성형에서는 수지가 캐비티 내를 흐르면서 냉각으로 인한 점도의 상승으로 전사성이 급격히 나빠지기 때문에 미세패턴을 가진 성형품을 제작하는데 많은 어려움이 따른다. 이를 해결하는 방법으로 금형온도를 용융된 수지온도 수준까지 순간적으로 표면만을 가열하여 성형시킨 후 급속히 냉각하는 다양한 순간금형가열방식이 있고, 그 중 본 연구에서는 전열가열방식인 E-Mold을 채택하였다. 특히, 마이크/나노 부품 성형에 필수적인 E-Mold 금형설계에 있어 heating line의 배치는 금형의 온도 제어 및 균일한 온도 분포에 절대적인 영향을 미치므로 최적화된 heating line의 배치가 필수적이다. 본 연구에서는 사출공정의 사이클 타임을 최소화하면서 다양한 해석 프로그램을 사용하여 E-Mold의 최적화 설계를 전산모사 하였고, 이를 실험결과와 비교하였다. 먼저, 3D CAD 프로그램인 Pro-Engineer Wildfire 2.0 을 사용하여 E-Mold 금형을 설계하고, ANSYS사의 ICEMCFD 프로그램을 사용하여 MESH 생성하고, ANSYS사의 FLUENT 프로그램을 사용하여 금형의 초기온도 $60^{\circ}C$에서 $120^{\circ}C$$180^{\circ}C$까지 가열하는데 걸리는 시간과 냉각시키는데 걸리는 시간 등을 전산모사 하였다. 그리고 Polycarbonate를 이용하여 LGP 도광판을 실제 사출성형하여 얻은 데이터와 비교 분석을 하였다. 전산모사와 실제 사출결과에서 $3{\sim}4$초가량의 차이가 나타났지만 실제 사출시 고온의 용융된 플라스틱 수지에 따른 냉각시간의 오차를 생각한다면, 전산모사와 실힘결과는 거의 일치한다고 볼 수 있다. 따라서 본 체계적인 전산모사방법을 통해 E-Mold의 Heating Line 최적화 설계가 가능하다는 것을 확인하였다.

유도가열 조건에 따른 사출성형품 웰드부의 강도 고찰 (An investigation into Weldline Strength According to Induction Heating Conditions)

  • 손동휘;서영수;박근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.441-444
    • /
    • 2009
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

  • PDF

고주파 유도가열을 사용한 초박육 플라스틱 제품의 사출성형 (Injection Molding for a Ultra Thin-Wall Part using Induction Heating)

  • 박근;최선;이세직;김영석
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.481-487
    • /
    • 2008
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation of induction heating in order to rapidly raise the mold temperature. It is observed that the mold surface temperature is raised up to $200^{\circ}C$ in 2 seconds. This induction heating is applied to injection molding of a flexspline for a plastic harmonic drive, which has difficulty in cavity filling because its minimum thickness is only 0.35 mm. The induction heating is then successfully implemented on this ultra-thin wall molding by raising the mold surface temperature around the glass-transition temperature of the molding material.