• 제목/요약/키워드: Mold Effect

검색결과 842건 처리시간 0.033초

B390 알루미늄 합금의 초정Si 입자분포에 미치는 원심주조 공정인자의 영향 (Effect of Centrifugal Casting Parameters on The Distribution of Primary Si Particles of B390 Aluminum Alloy)

  • 박정욱;김헌주
    • 한국주조공학회지
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2008
  • To develop a functionally graded microstructure of cylindrical liner, effect of centrifugal casting parameters such as pouring temperature of hyper-eutectic Al-Si alloy melt, mold pre-heating temperature, and rotational frequency of mold on distribution of primary Si particles across wall thickness were investigated. Segregation tendency of Si particles toward inner side of cylindrical liner increased as the increase of rotational frequency of mold, pouring temperature of melt and mold pre-heating temperature. Especially, distribution density of primary Si particles within 1.5 mm from inner surface of cylindrical liner was above 35% under the centrifugal casting condition of $750^{\circ}C$ melt pouring temperature, $300^{\circ}C$ mold pre-heating temperature, and 2500 rpm mold rotational frequency.

주형의 회전이 Al-Cu 합금의 응고과정에 미치는 영향 (The effect of mold rotation on solidification process of an Al-Cu alloy)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.525-540
    • /
    • 1997
  • The effect of mold rotation on the transport process and resultant macrosegregation pattern during solidification of an Al-Cu alloy contained in a vertical axisymmetric annular mold cooled from the inner wall is numerically investigated. The mold initially at rest starts to rotate at a prescribed angular velocity simultaneously with the beginning of cooling. Computed results for a representative case show that the mold rotation essentially suppresses the development of both thermal and solutal convections in the melt, creating distinct characteristics such as the liquidus front, flow pattern and temperature distribution from those for the stationary mold. Thermal convection which develops at the early stages of cooling is soon extinguished by the rotating flow induced during spin-up, and thus does not effectively remove the initial superheat from the melt. On the other hand, solutal convection, though it weakens considerably and is confined within the mushy zone, still predominates over the solute redistribution process. With increasing the angular velocity, the solute transport in the axial direction is enhanced, whereas that in the radial direction is reduced. The final macrosegregation formed in the mold rotating at moderate angular velocities appears to be favorable in comparison with the stationary casting, in that not only relatively homogenized composition is achieved, but also a severely positive-segregated channel is restrained.

대면적 UV 임프린팅 공정에서 유연 몰드의 변형 (Soft Mold Deformation of Large-area UV Impring Process)

  • 김남웅;김국원
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.53-59
    • /
    • 2011
  • Recently there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we focused on the deformation of the $2^{nd}$ generation TFT-LCD sized ($370{\times}470mm^2$) large-area soft mold in the UV imprinting process. A mold was fabricated with PDMS(Poly-dimethyl Siloxane) layered glass back plate(t0.5). Besides, the mold includes large surrounding wall type protrusions of 1.9 mm width and the via-hole(7 ${\mu}m$ diameter) patterend area. The large surrounding wall type protrusions cause the proximity effect which severely degrades the uniformity of residual layer in the via-hole patterend area. Therefore the deformation of the mold was calculated by finite element analysis to assess the effect of large surrounding wall type protrusions and the flexiblity of the mold. The deformation of soft mold was verified by the measurements qualitatively.

高密度 폴리에틸렌 材料의 再活用 混合比가 成形品에 미치는 影響 (The Effect on Recycled resin Ratio of High Density Polyethylene on the Molded Parts)

  • 강태호;김인관;김영수
    • 자원리싸이클링
    • /
    • 제13권5호
    • /
    • pp.23-27
    • /
    • 2004
  • 플라스틱 중에서 열가소성 수지는 재활용이 가능하지만 재활용 수지에 대한 균일한 물성의 신뢰성이 부족하기 때문에 제한적으로 사용되고 잇다. 정확한 재활용의 정도에 따른 물성을 파악하여 사용 범위를 규정하는 것은 제한된 자원을 효율적으로 사용할 수 있는 중요한 방법이라 하겠다. 본 연구는 고밀도 폴리 에틸렌(HDPE)을 대상으로 재활용의 정도에 따른 물성의 변화를 실험적으로 수행하였다. 재활용을 하지 않은 수지와 재활용 수지를 중량비를 기준으로 혼합하여 실험을 수행하였으며 기계적인 물성의 변화를 측정하였다.

인삼 잿빛곰팡이병의 친환경방제를 위한 유기농업자재 선발 (Selection of Environmental Friendly Organic Agricultural Materials for Controlling Ginseng Gray Mold)

  • 김우식;김종성;박지성;안인;박경훈;김기홍
    • 한국약용작물학회지
    • /
    • 제23권6호
    • /
    • pp.473-479
    • /
    • 2015
  • Background : To control ginseng gray mold, farmers have mainly used inorganic chemical based fungicides. The recent emergence of fungicide resistance has reduced the effectiveness of such control methods. Such pesticides also carry additional problems, such as diffuse pollution. Methods and Results : Six treatments of organic agricultural materials were tested for control of ginseng gray mold, CAPW (Chrysophanic acid + Phytoncide + Wood vinegar), EmEWV (Emodin + Ethanol + Wood vinegar), CEWV (Curcumin + Eugenol + Wood vinegar), Bacillus subtilis, soybean oil and sulfur. The control effect for gray mold by a single application of the agrochemical fungicide industrial Fenhexamid wettable powder (WP) was 84.4%. The control effect by CAPW, EmEWV and CEWV varied between 52.7 - 64.9%. The control effect by B. subtilis, soybean oil, and sulfur were 32.9 - 59.2%. Conclusions : In the field tests, CAPW showed the highest control effects when used before, and at first stage of disease incidence, against ginseng gray mold.

3-D 점탄성 모델을 이용한 복합재 성형후 잔류변형해석 및 몰드 효과 연구 (Residual Deformation Analysis of Composite by 3-D Viscoelastic Model Considering Mold Effect)

  • 이홍준;김위대
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.426-433
    • /
    • 2021
  • 탄소 섬유 강화 복합재료는 오토클레이브 공정 시 발생하는 잔류응력이 발생하고, 스프링 인, 뒤틀림과 같은 열변형으로 인해 치수 결함이 발생한다. 열변형의 주요원인은 제품의 형상, 수지의 화학 수축과 열팽창, 몰드의 재질과 표면 상태에 따른 몰드 효과 등 다양한 요인에 의해 발생한다. 본 연구는 열변형을 예측하기 위해 점탄성 모델 해석 기법을 평판 모델에 적용하여 열변형의 주요 원인인 수지의 화학 수축과 열팽창의 영향을 분석했고, 몰드 유무에 따른 3-D 점탄성 모델의 해석 기법을 검증했다. 검증된 3-D 점탄성 모델의 해석 기법을 이용하여 L-형상의 몰드 효과를 분석한 결과, 동일한 재질의 몰드를 사용했더라도 표면 상태에 따라 잔류 변형이 다르게 나타났다.

우레탄레진(TSR-755)을 이용한 시작형몰드의 냉각채널 배치에 따른 영향 해석 (The Effect of cooling channel in prototype mold(TSR-755))

  • 김광희;김정식;이윤영
    • 한국산학기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.702-706
    • /
    • 2009
  • 본 연구에서는 시작형 몰드재료로 우레탄 레진(TSR-755)을 이용하여 레이저 조형으로 다양한 형태의 냉각 채널을 가진 몰드로 가공했을 경우, 사출성형 상용패키지(Simpoe-Mold)를 사용하여 냉각채널 변화에 따라 사출물의 냉각시간과 변형량을 비교 검토 하였다. 해석결과, 사출물 주변의 적절한 냉각채널배치로 기존 금속재질의 시작형 몰드 대비 19% 최대 변형량 감소와 46%의 냉각시간 단축이 가능한 것으로 나타났다.

고크롬 백주철재 소실모형 주조시 표면 결함 발생에 미치는 모형밀도 및 감압의 영향 (The Effect of Mold Density and Evacuation on Surface Defect in Lost Form Casting of High Chromium Cast Irons)

  • 이규희;유국종;백응률;최현진;이경환
    • 한국주조공학회지
    • /
    • 제22권6호
    • /
    • pp.309-314
    • /
    • 2002
  • The effect of mold density and evacuation on surface defect of high chromium cast iron upon EPC process was investigated. Under evacuation of $0.1{\sim}0.3$ atm, surface defects were carbon defect, burn on and misrun. Carbon defect was augmented by increasing mold density from 0.011 g/$cm^3$ to 0.03 g/$cm^3$ under evacuation of $0.1{\sim}0.3$ atm, but carbon defect was decreased by increasing evacuation from 0.1 to 0.3 atm. Burn-on wasn't found under evacuation of 0.1 atm regardless of mold density, but burn-on was augmented by increasing evacuation from 0.2 to 0.3 atm and decreased by reducing mold density. Misrun was only found under 0.1 atm evacuation and 0.011 g/$cm^3$ mold density.

진공척 흡착패드 형태에 따른 대면적 임프린팅 균일 접촉 향상 연구 (Study on the Enhancement of the Uniform Contact Technology for Large Scale Imprinting with the Design of Vacuum Gripping Pad)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.326-331
    • /
    • 2008
  • The contact surfaces between mold and target should be in parallel for a proper imprinting process. However, large size of contacting area makes it difficult for both mating surfaces (mold and target planes) to be in all uniform contact with the expected precision level in terms of thickness and position. This is caused by the waviness of mold and target although it is very small relative to the area scale. The gripping force for both mold and target by the vacuum chuck is other major effect to interrupt the uniform contact, which must be avoided in imprinting mechanism. In this study, the cause of non-conformal contact mechanism between mold and target is investigated with the consideration of deformation due to the vacuum gripping for the size $470{\times}370\;mm^2$ LCD panel.

정밀금형 알루미늄 합금주조공정시 주물/금형 접촉면에서의 Inverse 열전달해석에 관한 연구 (Inverse Heat Transfer Analysis at the Mold/Casting Interface in the Aluminum Alloy Casting Process with Precision Metal Mold)

  • 문수동;강신일
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.246-253
    • /
    • 1998
  • Precision metal mold casting process is a casting method manufacturing mechanical elements with high precision, having heavy/light alloys as casting materials and using permanent mold. To improve dimensional accuracy and the final mechanical properties of the castings, the solidification speed and the cooling rate of the casting should be controlled with the optimum mold cooling system, and moreover, to obtain more accurate control of the whole process interfacial heat transfer characteristic at the mold/casting interface must be studied in advance. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling system was designed and the temperature histories at points inside the metal mold were measured during the casting process. The heat transfer phenomena at the mold/casting interface was characterized by the heat flux between solidifying casting metal and metal mold, and the heat flux history was obtained using inverse heat conduction method. The effect of mold cooling condition upon the heat flux profile was examined, and the analysis shows that the heat flux value has its maximum at the beginning of the process.

  • PDF